Lö bel, S., Snäll, T. and Rydin, H. 2006. Species richness patterns and metapopulation process Á/ evidence from epiphyte communities in boreo-nemoral forests. Á/ Ecography 29: 169 Á/182.For several epiphyte species, dispersal limitation and metapopulation dynamics have been suggested. We studied the relative importance of local environmental conditions and spatial aggregation of species richness of facultative and obligate epiphytic bryophytes and lichens within two old-growth forests in eastern Sweden. The effect of the local environment was analyzed using generalized linear models (GLM). We tested whether species richness was spatially structured by fitting variogram models to the residuals of the GLM. In addition, we analyzed the species-area relationship (area0/tree diameter). Different environmental variables explained the richness of different species groups (bryophytes vs lichens, specialists vs generalists, sexual vs asexual dispersal). In most groups, the total variation explained by environmental variables was higher than the variation explained by the spatial model. Spatial aggregation was more pronounced in asexually than in sexually dispersed species. Bryophyte species richness was only poorly predicted by area, and lichen species richness was not explained by area at all. Spatial aggregation may indicate effects of dispersal limitation and metapopulation dynamics on community species richness. Our results suggest that species groups differ in habitat requirements and dispersal abilities; there were indications that presence of species with different dispersal strategies is linked to the age of the host tree. Separate analyses of the species richness of species groups that differ in the degree of habitat specialization and dispersal ability give insights into the processes determining community species richness. The poor species-area relationship, especially in lichens, may indicate species turnover rather than accumulation during the lifetime of the host tree. Epiphyte species extinctions may be mainly caused by deterministic processes, e.g. changes in habitat conditions as the host tree grows, ages and dies, rather than by stochastic population processes.
Summary1 Deciduous trees within a coniferous forest landscape provide habitat for many organisms. Single trees in deciduous forests form dynamic patches that emerge, grow and fall, but the stands themselves are also dynamic patches established after disturbances and replaced by conifers during succession. Increased dispersal distance, as imposed by landscape fragmentation, may lead to extinctions and reduced biodiversity among species dependent on this dynamic network. 2 We analysed regional frequency distributions, local abundances and spatial occupancy patterns of epiphytic bryophytes in 135 deciduous forest stands in a fragmented landscape in Sweden. We used generalized non-linear models to test whether these patterns could be assigned to metapopulation dynamics of individual epiphytes by investigating the relative importance of stand size, habitat quality, connectivity and landscape history on species occupancies and local abundances. 3 Most asexually dispersed species were regionally rare, and spatial species occupancy patterns suggest that this is caused by dispersal limitation. In sexually dispersed species, a strong rescue effect was indicated by a bimodal frequency distribution of the species, as well as by increasing local abundance with increasing connectivity to stands present today, or some decades ago. There was a strong positive relationship between regional frequency and local abundance of the species, and between species richness and forest stand size. Vicinity to forest edge negatively affected the local abundance of most species. 4 Our results clearly indicate a metapopulation structure. Sensitivity of epiphytes to habitat fragmentation is caused by decreasing forest sizes, habitat alteration at forest edges and increasing dispersal distances. Even in assumed good dispersers, increasing distances can significantly alter regional dispersal processes. A lower rescue effect leads to smaller stand population sizes with a larger extinction risk. Rapid reduction of the amount of habitat during the last decades and the expected time-lag in species extinctions suggest that epiphytes will further decline in the future, although there may still be time for restoration programmes to prevent extinction.
Question: While it is well known that species richness depends on plot size, it is not generally recognised that the same must be true for constancy. Accordingly, many authors use varying plot sizes when classifying vegetation based on the comparison of constancies between groups of plots. We ask whether the constancy‐area relationship follows a general rule, how strong the effect of plot sizes is on constancies, and if it is possible to correct constancies for area. Location: For empirical evaluation, we use data from plant communities in the Czech Republic, Sweden and Russia. Methods: To assess the potential influence of differences in plot size on constancies, we develop a mathematical model. Then, we use series of nested plot species richness data from a wide range of community types (herbaceous and forest) to determine the parameters of the derived function and to test how much the shape of the constancy‐area relationship depends on taxa or vegetation types. Results: Generally, the constancy‐area relationship can be described by C (A)=1−(1−C0)(A/A0)^d, with C being constancy, A area, C0 known constancy on a specific area A0, and d a damping parameter accounting for spatial autocorrelation. As predicted by this function, constancies in plant communities always varied from values near 0% to near 100% if plot sizes were changed sufficiently. For the studied vegetation types, a two‐ to fourfold increase in plot size resulted in a change of conventional constancy classes, i.e. an increase of constancy by 20% or more. Conclusions: Vegetation classification, which largely relies on constancy values, irrespective of whether traditional or modern fidelity definitions are used, is strongly prone to distorting scale effects when relevés of different plot sizes are combined in studies. The constancy‐area functions presented allow an approximate transformation of constancies to other plot sizes but are flawed by idiosyncrasies in taxa and vegetation types. Thus, we conclude that the best solution for future surveys is to apply uniform plot sizes within a few a priori delimited formations and to determine diagnostic species only within these formations. Finally, we suggest that more detailed analyses of constancy‐area relationships can contribute to a better understanding of species‐area relationships because the latter are the summation of the first for all species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.