Circulating microRNAs show superior value as diagnostic and disease activity markers in comparison to traditional methods. Circulating microRNAs could improve CD patient management, if applied in combination with current state-of-the-art diagnostic and disease activity assessment modalities.
Non-negative matrix factorization (NMF) is an excellent tool for unsupervised parts-based learning, but proves to be ineffective when parts of a whole follow a specific pattern. Analyzing such local changes is particularly important when studying anatomical transformations. We propose a supervised method that incorporates a regression constraint into the NMF framework and learns maximally changing parts in the basis images, called Regression based NMF (RNMF). The algorithm is made robust against outliers by learning the distribution of the input manifold space, where the data resides. One of our main goals is to achieve good region localization. By incorporating a gradient smoothing and independence constraint into the factorized bases, contiguous local regions are captured. We apply our technique to a synthetic dataset and structural MRI brain images of subjects with varying ages. RNMF finds the localized regions which are expected to be highly changing over age to be manifested in its significant basis and it also achieves the best performance compared to other statistical regression and dimensionality reduction techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.