Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin’s role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression–like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a ‘brake’ to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting – a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Pain is a critical component hindering recovery and regaining of function after surgery, particularly in the elderly. Understanding the role of pain signaling after surgery may lead to novel interventions for common complications such as delirium and postoperative cognitive dysfunction. Using a model of tibial fracture with intramedullary pinning in male mice, associated with cognitive deficits, we characterized the effects on the primary somatosensory system. Here we show that tibial fracture with pinning triggers cold allodynia and up-regulates nerve injury and inflammatory markers in dorsal root ganglia (DRGs) and spinal cord up to 2 wk after intervention. At 72 h after surgery, there is an increase in activating transcription factor 3 (ATF3), the neuropeptides galanin and neuropeptide Y (NPY), brain-derived neurotrophic factor (BDNF), as well as neuroinflammatory markers including ionized calcium-binding adaptor molecule 1 (Iba1), glial fibrillary acidic protein (GFAP), and the fractalkine receptor CX3CR1 in DRGs. Using an established model of complete transection of the sciatic nerve for comparison, we observed similar but more pronounced changes in these markers. However, protein levels of BDNF remained elevated for a longer period after fracture. In the hippocampus, BDNF protein levels were increased, yet there were no changes in Bdnf mRNA in the parent granule cell bodies. Further, c-Fos was down-regulated in the hippocampus, together with a reduction in neurogenesis in the subgranular zone. Taken together, our results suggest that attenuated BDNF release and signaling in the dentate gyrus may account for cognitive and mental deficits sometimes observed after surgery.postoperative pain | nerve injury | memory | delirium | neurogenesis
Major depressive disorder (MDD) is a substantial burden to patients, families, and society, but many patients cannot be treated adequately. Rodent experiments suggest that the neuropeptide galanin (GAL) and its three G protein-coupled receptors, GAL 1-3 , are involved in mood regulation. To explore the translational potential of these results, we assessed the transcript levels (by quantitative PCR), DNA methylation status (by bisulfite pyrosequencing), and GAL peptide by RIA of the GAL system in postmortem brains from depressed persons who had committed suicide and controls. Transcripts for all four members were detected and showed marked regional variations, GAL and galanin receptor 1 (GALR1) being most abundant. Striking increases in GAL and GALR3 mRNA levels, especially in the noradrenergic locus coeruleus and the dorsal raphe nucleus, in parallel with decreased DNA methylation, were found in both male and female suicide subjects as compared with controls. In contrast, GAL and GALR3 transcript levels were decreased, GALR1 was increased, and DNA methylation was increased in the dorsolateral prefrontal cortex of male suicide subjects, however, there were no changes in the anterior cingulate cortex. Thus, GAL and its receptor GALR3 are differentially methylated and expressed in brains of MDD subjects in a region-and sex-specific manner. Such an epigenetic modification in GALR3, a hyperpolarizing receptor, might contribute to the dysregulation of noradrenergic and serotonergic neurons implicated in the pathogenesis of MDD. Thus, one may speculate that a GAL 3 antagonist could have antidepressant properties by disinhibiting the firing of these neurons, resulting in increased release of noradrenaline and serotonin in forebrain areas involved in mood regulation.epigenetics | human postmortem brain | neuropeptides | stress | transmitter coexistence
Hepatic nerves have a complex role in synchronizing liver metabolism. Here, we used three-dimensional (3D) immunoimaging to explore the integrity of the hepatic nervous system in experimental and human nonalcoholic fatty liver disease (NAFLD). We demonstrate parallel signs of mild degeneration and axonal sprouting of sympathetic innervations in early stages of experimental NAFLD and a collapse of sympathetic arborization in steatohepatitis. Human fatty livers display a similar pattern of sympathetic nerve degeneration, correlating with the severity of NAFLD pathology. We show that chronic sympathetic hyperexcitation is a key factor in the axonal degeneration, here genetically phenocopied in mice deficient of the Rac-1 activator Vav3. In experimental steatohepatitis, 3D imaging reveals a severe portal vein contraction, spatially correlated with the extension of the remaining nerves around the portal vein, enlightening a potential intrahepatic neuronal mechanism of portal hypertension. These fundamental alterations in liver innervation and vasculature uncover previously unidentified neuronal components in NAFLD pathomechanisms.
The neuropeptide galanin coexists in rat brain with serotonin in the dorsal raphe nucleus and with noradrenaline in the locus coeruleus (LC), and it has been suggested to be involved in depression. We studied rats exposed to chronic mild stress (CMS), a rodent model of depression. As expected, these rats showed several endophenotypes relevant to depression-like behavior compared with controls. All these endophenotypes were normalized after administration of a selective serotonin reuptake inhibitor. The transcripts for galanin and two of its receptors, galanin receptor 1 (GALR1) and GALR2, were analyzed with quantitative real-time PCR using laser capture microdissection in the following brain regions: the hippocampal formation, LC, and ventral periaqueductal gray (vPAG). Only Galr1 mRNA levels were significantly increased, and only in the latter region. After knocking down Galr1 in the vPAG with an siRNA technique, all parameters of the depressive behavioral phenotype were similar to controls. Thus, the depression-like behavior in rats exposed to CMS is likely related to an elevated expression of Galr1 in the vPAG, suggesting that a GALR1 antagonist could have antidepressant effects.dorsal raphe | neuropeptide | siRNA | stress | transmitter coexistence T he indoleamine hypothesis of depression was formulated some five decades ago (1, 2), in parallel with the catecholamine hypothesis (3, 4), and has been supported by the success of selective serotonin reuptake inhibitors (SSRIs) for treatment of major depression (MD) (5). However, in a considerable number of cases, SSRIs are associated with side effects or lack of efficacy. For example, after treatment with SSRIs, only one-third of patients obtain full remission of symptoms (6). Therefore, there is an ongoing search for new medications targeting mood disorders, such as MD and anxiety. Here, neuropeptides and their receptors, the most diverse family of neurotransmitters in the brain (7), have been extensively explored (5,(8)(9)(10)(11)(12)(13)(14)(15)(16)(17), including galanin and its three receptors.Galanin is a 29-aa (30-aa in humans) neuropeptide (18) with a wide distribution in the rat brain (19,20), where it is coexpressed with noradrenaline/norepinephrine (NA) in locus coeruleus (LC) neurons and with 5-hydroxytryptamine (5-HT) in dorsal raphe nucleus (DR) neurons (21-25). There are three galanin receptors, GALR1-GALR3, which all belong to the family of seven transmembrane-spanning, G protein-coupled receptors (26-29). They are found in many areas of the rat brain, as first shown with autoradiographic ligand-binding methodology (30, 31), and later with in situ hybridization (ISH)/quantitative real-time PCR (qPCR) (32-36). The galanin system has been associated with numerous physiological and pathophysiological functions (29), including depression-and anxiety-like behaviors.There is early evidence from studies on the rat that central administration of galanin influences mood-related behavior in a region-specific way (37, 38), and also that galanin is prodepres...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.