In recent trends membrane reflector has increased its applications in space missions due its significant advantage such as light in weight, higher folding and packaging efficiency, ease of deployment, low on-Board volume requirement. Geometry of the membrane reflector has significant influence on its the stress distribution and area of deformation, subsequently determining the stiffness and geometrical parameters of its supporting structures. The present study uses a Taguchi optimization method of orthogonal array for investigating the membrane geometry parameter and its effect on membrane reflector.
In recent trends, membrane structure has increased its applications in space missions due to its significant advantages, such as light in weight, higher folding and packaging efficiency, ease of deployment, and low on-Board volume requirement. The wrinkling and low natural frequency of vibration are the major problems with the membrane structure. This research presents a novel methodology of Kapton-Kevlar material combination for a planar membrane reflector to enhance anti-vibration and anti-wrinkling capabilities of the membrane structure. The comparative study is made for the wrinkle area, RMS error, and natural frequency of vibration with the employed approach. This study provides new insights into a material combination technique to increase performance characteristics of the space-borne membrane reflectors. The outcome of the wrinkling analysis is compared and found to be consistent with the method available in the literature. From the simulation results, it is observed that wrinkles are reduced, and the natural frequency of vibration is also increased significantly with the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.