High-energy electrochemical storage containing earth abundant materials could be a choice for future battery development. Recent research reports indicated the possibility of room-temperature sodium-ion–sulfur chemistry for large storage including smart grids. Here, we report a room-temperature sodium–sulfur battery cathode that will address the native downsides of a sodium–sulfur battery, such as polysulfide shuttling and low electrical conductivity of elemental sulfur. In this Letter, we use a sustainable route which ensures a large sulfur confinement (i.e., ∼90 wt %) in the cathode structure. The sulfur-embedded polymer is realized via thermal ring-opening polymerization of benzoxazine in the presence of elemental sulfur (CS90) and later composite with reduced graphene oxide (rGO). The resulting CS90 allows a homogeneous distribution of sulfur due to in situ formation of the polymer backbone and allows maximum utilization of sulfur. This unique electrode structure bestows CS90–rGO with an excellent Coulombic efficiency (99%) and healthy cycle life.
Cardanol, an agrowaste – solventless synthesis and processability of benzoxazine monomers. Tailoring the polymer properties as a function of oxazine functionality in the monomers.
Isomerization of double bonds from an allylic to propenyl position is generally mediated by expensive metal catalysts, demanding an additional synthetic step, thereby reducing sustainability of the reaction. However, such functionalities are inherent in naturally occurring compounds, enabling a versatile protocol for their industrial utility. Herein, we report the synthesis of benzoxazine monomers based on biosourced isomeric phenols, eugenol (E) and isoeugenol (IE), and biobased amine, furfurylamine (fa) to form E-fa and IE-fa monomer, respectively. The structural variation in the phenols revealed a differential chemical reactivity, during both the synthesis of the monomer and the polymerization reaction, confirming a significant influence of isomerism. The monomers only differ in the position of the double bond in the para-substituted propylene unit forming nonconjugated vs conjugated alkylene chain with the benzene ring containing benzoxazine in E-fa and IE-fa, respectively. The structure of the monomers was confirmed by 1 H NMR, 13 C NMR, FTIR, XRD, and mass spectrometry. The high purity of monomer was further affirmed by HPLC and DSC to demonstrate the effect of isomerization on the polymerization behavior. The extended conjugation of the double bond in IE-fa with the proximal benzoxazine ring showed a higher reactivity toward ring-opening polymerization, polymer conversion, and cross-linking reactions as supported by FTIR, NMR, and DSC-based kinetic studies. Thermal stability, mechanical properties, and adhesive analysis by TGA, DMTA, and lap shear strength measurements further supported the effect of structural isomerism of monomers with a higher potential of PIE-fa over the PE-fa network. Current work illustrates an economic, one-step, microwave-assisted, and VOC's-and catalyst-free synthesis with a simultaneous solventless processing of synthesized monomers using renewable materials as feedstocks for high-performance polymers.
Graphene oxide (GO) is a promising and remarkable nanomaterial that exhibits antimicrobial activity due to its specific surface–interface interactions. In the present work, for the first time, we have reported the antibacterial activity of GO-coated surfaces prepared by two different methods (Hummers’ and improved, i.e., GOH and GOI) against bacterial biofilm formation. The bacterial toxicity of the deposited GO-coated surfaces was investigated for both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) models of bacteria. The mechanism of inhibition is different on the coated surface than that in suspension, as determined by measurement of the percentage inhibition of biofilm formation, Ellman’s assay, and colony forming unit (CFU) studies. The difference in the nature, degree of oxidative functionalities, and size of the synthesized GO nanoparticles mitigates biofilm formation. To better understand the antimicrobial mechanism of GO when coated on surfaces, we were able to demonstrate that beside reactive oxygen species-mediated oxidative stress, the physical properties of the GO-coated substrate effectively inactivate bacterial cell proliferation, which forms biofilms. Light and atomic force microscopy (AFM) images display a higher inhibition in the proliferation of planktonic cells in Gram-negative bacteria as compared to that in Gram-positive bacteria. The existence of a smooth surface with fewer porous domains in GOI inhibits biofilm formation, as demonstrated by optical microscopy and AFM images. The oxidative stress was found to be lower in the coated surface as compared to that in the suspensions as the latter enables exposure of both a large fraction of the active edges and functionalities of the GO sheets. In suspension, GOH is selective against S. aureus whereas GOI showed inhibition toward E. coli. This study provides new insights to better understand the bactericidal activity of GO-coated surfaces and contributes to the design of graphene-based antimicrobial surface coatings, which will be valuable in biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.