Given the agonistic nature of near work to promote axial elongation and the antagonistic nature of time outdoors to prevent myopia, we aimed to investigate the following: (a) how the short-term effect of near work performed outdoors (Experiment 1) influences axial length and (b) how near work performed in two different dioptric profiles (uncluttered and cluttered) alters the changes in central axial length (Experiment 2). Methods: Forty-six adults (age range: 19-32 years) participated in the study. In Experiment 1, 22 participants completed a 15-min distance task and a reading task in both the outdoor (~30,000 lux) and indoor (~70 lux) locations. In Experiment 2, 24 participants performed the same reading task at a study desk in uncluttered and cluttered reading environments. Pre-and post-task ocular biometry measurements were performed for each session using a non-contact biometer. Results:In Experiment 1, a significant increase in axial length from baseline was found after performing reading tasks in both outdoor (mean ± SEM: +12.3 ± 3.4 μm, p = 0.001) and indoor locations (+11.9 ± 3.1 μm, p = 0.001). In Experiment 2, axial length increased significantly from baseline to post reading task, in both uncluttered (+17.9 ± 3.5 μm, p < 0.001) and cluttered reading environments (+19.2 ± 2.9 μm, p < 0.001). No significant changes in axial length were observed either between outdoor and indoor locations (p = 0.92) or between the uncluttered and cluttered reading environment (p = 0.75). Conclusion: Independent of light intensity (outdoor or indoor location) and dioptric profile of the near-work environment (uncluttered or cluttered), a 15-min reading task led to a significant increase in axial length. While the long-term effects of these findings need to be evaluated, practitioners should emphasise how near work can reduce the beneficial effects of time outdoors, while providing recommendations related to time outdoors for myopia control.
We aimed to test the accommodative lag and mechanical tension theories for myopia by assessing the influence of the lag of accommodation on axial elongation by using three different near targets that are known to influence the accommodative response differently.Methods: Forty-two young adults were recruited for the study. Axial length was measured using a non-contact biometer, before and immediately after a 15 minute visual task, with one of the three near targets placed 20 cm from the eye: reading text from a paper, reading text from a smartphone and watching a video on a smartphone. The accommodative response was determined using an open-field autorefractor while the participants viewed the near target monocularly.Results: Lag of accommodation was significantly different for the three tasks: watching a video (mean ± standard error of the mean [SEM] 0.92 ± 0.10 D); reading text on the smartphone (0.59 ± 0.08 D); and reading text on paper (0.24 ± 0.09 D). There was a significant (p < 0.05) increase in axial length after reading text from a paper (10.5 ± 1.9 µm after 15-min) and reading text from a smartphone (5.2 ± 2.7 µm), but not after watching a video on a smartphone (−0.5 ± 1.7 µm, p = 0.47). Vitreous chamber depth increased significantly more with the reading tasks compared with watching a video (reading text from a paper and smartphone: 33.9 ± 4 µm and 31.7 ± 4 µm vs. watching a video on a smartphone: 14.6 ± 5 µm, p = 0.001). Conclusion:Greater changes in axial length associated with the low lag of accommodation failed to support the theory that lag of accommodation during visual tasks could be the trigger for axial elongation. Reading on paper and smartphone at the closest reading distance may stimulate high accommodative demand and axial elongation as a consequence, possibly due to increased "ciliary muscle tension" during accommodation.
Purpose: Considering that a certain proportion of high myopes have reduced visual acuity even after full optical correction, this study aimed to investigate the association between various refractive error components (sphere, cylinder and axis orientation) and reduced visual acuity in individuals with low to high myopia with and without pathologic myopia lesions. Methods:We analysed data from randomly selected eyes of 11,258 individuals with myopia (mean ± SD spherical equivalent (SE) −3.2 ± 2.9D; range: −0.5D to −21.5D). In total, 10,528 individuals had no pathologic myopia lesions. Sphere, cylinder and SE refraction were classified into mild, moderate and high categories.Astigmatism was defined as with-the-rule, against-the-rule or oblique based on the axis orientation. Reduced best-corrected visual acuity was defined as ≥0.18 logMAR. Logistic regression was performed to test factors associated with reduced visual acuity with and without pathologic myopia lesions.Result: Overall, 6.4% (N = 720/11,258) of myopes had reduced best-corrected visual acuity. High sphere (≤−6.0D; Odd ratios [OR]: 16.1; 95% CI: 2.1-126.5), high cylinder (<−2.0 DC; OR: 2.5; 95% CI: 1.8-3.4), against-the-rule (OR: 1.5; 95% CI: 1.1-2.0) and oblique astigmatism (OR: 1.6; 95% CI: 1.2-2.1) were significantly (p ≤ 0.008) associated with reduced visual acuity in the absence of pathologic myopia lesions. Both moderate SE and high myopic SE were also associated with reduced visual acuity.In the presence of pathologic myopia lesions, tessellated fundus (OR: 6.9; 95% CI: 3.5-14.1), chorioretinal atrophy (OR: 7.7; 95% CI: 2.6-19.9) and choroidal neovascularisation (OR: 37.4; 95% CI: 3.3-419.3) were significantly (p ≤ 0.003) associated with reduced visual acuity. Conclusion:Even after full optical correction, both refractive components and pathologic myopia lesions can independently cause reduced visual acuity, regardless of the degree of myopia. K E Y W O R D S myopic lesions, ocular pathologies, reduced vision, risk factors, visual acuityHow to cite this article: Manoharan MK, Thakur S, Dellhi S, Verkicharla PK. Factors associated with reduced visual acuity in myopes with and without ocular pathologies after optical correction.
Purpose: To study the relationship between the severity of myopia and the severity of diabetic retinopathy (DR) in individuals with type 1 or type 2 diabetes mellitus (DM). Methods: This retrospective study was conducted using data from electronic medical records from a multicentric eyecare network located in various geographic regions of India. Individuals with type 1 or type 2 DM were classified according to their refractive status. Severe nonproliferative DR (NPDR), PDR, or presence of clinically significant macular edema (CSME) with any type of DR was considered as vision-threatening diabetic retinopathy (VTDR). Results: A total of 472 individuals with type-1 DM (mean age 41 ± 10 years) and 9341 individuals with type-2 DM (52 ± 9 years) were enrolled. Individuals with a hyperopic refractive error had a significant positive association with the diagnosis of VTDR (odds ratio (OR) 1.26; 95%CI 1.04–1.51, P = 0.01) and moderate nonproliferative DR (OR 1.27; 95%CI 1.02–1.59, P = 0.03) in type-2 DM; however, no significant association was found in type-1 DM. After adjusting for age, gender, anisometropia, and duration of diabetes, the presence of high myopia (< - 6 D) reduced the risk of VTDR in type 2 DM (OR 0.18; 95% CI 0.04–0.77, P = 0.02), but no association was found in type 1 DM. Mild and moderate myopia had no significant association with any forms of DR in both type-1 and type-2 DM. Conclusion: Hyperopic refractive error was found to increase the risk of VTDR in persons with type 2 DM. High-myopic refractive error is protective for VTDR in type 2 DM, but not in type-1 DM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.