Air pollution and its harm to human health has become a serious problem in many cities around the world. In recent years, research interests in measuring and predicting the quality of air around people has spiked. Since the Internet of things has been widely used in different domains to improve the quality for people by connecting multiple sensors. In this work an IOT based air pollution monitoring with prediction system is proposed. The internet of Things is a action interrelated computing devices that are given unique identifiers and the capability of exchange information over a system without anticipating that human to human or human to machine communication. The deep learning algorithm approach is to evaluate the accuracy for the prediction of air pollution. The main objective of the project is used to predict the air Quality. The large dataset works with LSTM for better air quality prediction. The prediction accuracy of air quality with LSTM, the evaluation indicator Root means square error is chosen to measure performance.
Air pollution is the release of pollutants into the atmospheric air which are harmful to human health and the planet as a whole. Car emissions, dust, pollen, chemicals from factories and mold spores may be suspended as a particle. In this survey, the analyzes are made revolving on air quality prediction using the traditional statistics method. The prediction using air pollutants are PM2.5, PM10, NO2, NOx, NO, SO2, CO, O3 and meteorological parameters such as Absolute Temparathure(AT) and Relative Humidity(RH). In this comparison experiments, common predicted algorithms are Naive Method, Auto-Regressive Integrated Moving Average(ARIMA), Exponentially Weighted Moving Average(EWMA), Linear Regression(LR), LSTM model, Prophet Model are analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.