In this chapter, we aim to aid the development of Cyber-Physical Systems (CPS) in automated understanding of events and activities in various applications of videosurveillance. These events are mostly captured by drones, CCTVs or novice and unskilled individuals on low-end devices. Being unconstrained in nature, these videos are immensely challenging due to a number of quality factors. We present an extensive account of the various approaches taken to solve the problem over the years. This ranges from methods as early as Structure from Motion (SFM) based approaches to recent solution frameworks involving deep neural networks. We show that the long-term motion patterns alone play a pivotal role in the task of recognizing an event. Consequently each video is significantly represented by a fixed number of key-frames using a graph-based approach. Only the temporal features are exploited using a hybrid Convolutional Neural Network (CNN) + Recurrent Neural Network (RNN) architecture. The results we obtain are encouraging as they outperform standard temporal CNNs and are at par with those using spatial information along with motion cues. Further exploring multistream models, we conceive a multi-tier fusion strategy for the spatial and temporal wings of a network. A consolidated representation of the respective individual prediction vectors on video and frame levels is obtained
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.