Trace detection of Se, As, and Sb atoms has been performed by electrothermal atomization laser-induced fluorescence (ETA-LIF) approaches. Production of far-UV radiation necessary for excitation of As atoms at 193.696 nm and Se atoms at 196.026 nm was accomplished by stimulated Raman shifting (SRS) of the output of a frequency-doubled dye laser operating near 230 nm. Both wavelengths were obtained as second-order anti-Stokes shifts of the dye laser radiation and provided up to 10 μJ/pulse, which was shown through power dependence studies to be sufficient for saturation in the ETA. An excited-state direct line fluorescence approach using excitation at 206.279 nm was also investigated for the LIF detection of Se. High-sensitivity LIF of Sb atoms was accomplished using 206.833-nm excitation and detection at 259.805 nm. The accuracy of the ETA-LIF approaches was demonstrated by determining the As and Se content of aqueous reference samples. The limits of detection (absolute mass) were 200 fg by ground-state LIF and 150 fg by excited-state direct line fluorescence for Se, 200 fg for As, and 10 fg for Sb; these LODs compare favorably with results reported previously in the literature for ETA-LIF, GFAAS, and ICP-MS methods.
A procedure for the direct determination of arsenic in diluted serum by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS) is reported. Laser radiation needed to excite As at 193.696 and 197.197 nm is generated as the second anti-Stokes stimulated Raman scattering output of a frequency-doubled dye laser operating near 230.5 and 235.5 nm, respectively. Two different LEAFS schemes have been utilized and provide limits of detection of 200-300 fg for As in aqueous standards. When measurements of serum samples diluted 1:10 with deionized water are performed, a stable background signal is observed that can be accounted for by taking measurements with the laser tuned off-wavelength. No As is detected in any of the bovine or human serum samples analyzed. Measurements of 100 pg/mL standard additions of As to a diluted bovine serum sample utilizing either inorganic or organic As species demonstrate a linear relationship of the fluorescence signal to As spike concentration, but exhibit a sensitivity of approximately half that observed in pure aqueous standards. The limit of detection for As in 1:10 diluted serum samples is 65 pg/mL or 650 fg absolute mass, which corresponds to 0.65 ng/mL As in undiluted serum. To our knowledge, the ETA-LEAFS procedure is currently the only one capable of directly measuring As in diluted serum at these levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.