The Coronavirus disease (COVID-19) pandemic is the most recent threat to global health. Reverse transcription-polymerase chain reaction (RT-PCR) testing, computed tomography (CT) scans, and chest X-ray (CXR) images are being used to identify Coronavirus, one of the most serious community viruses of the twenty-first century. Because CT scans and RT-PCR analyses are not available in most health divisions, CXR images are typically the most time-saving and cost-effective tool for physicians in making decisions. Artificial intelligence and machine learning have become increasingly popular because of recent technical advancements. The goal of this project is to combine machine learning, deep learning, and the health-care sector to create a categorization technique for detecting the Coronavirus and other respiratory disorders. The three conditions evaluated in this study were COVID-19, viral Pneumonia, and normal lungs. Using X-ray pictures, this research developed a sparse categorical cross-entropy technique for recognizing all three categories. The proposed model had a training accuracy of 91% and a training loss of 0.63, as well as a validation accuracy of 81% and a validation loss of 0.7108.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.