Gender classification has become an essential task in human computer interaction (HCI). Gender classification is used in immense number of applications like passive surveillance, control in smart buildings (restricting access to certain areas based on gender) and supermarkets, gender advertising, security investigation. So far detection of gender using facial features is done by using the methods like Gabor wavelets, artificial neural networks and support vector machine. In this work, facial distance measure is used as a progenitor to achieve the gender classification. The proposed approach performs gender classification using mathematical operations on the frontal pose face images using Matlab. This work can be further evaluated in future by using different databases with various poses other than the frontal pose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.