Vaccine effectiveness in the 2011-2012 season was modest overall, with lower effectiveness against the predominant A (H3N2) virus. This may be related to antigenic drift, but past history of vaccination might also play a role.
Background. During the 2012–2013 influenza season, there was cocirculation of influenza A(H3N2) and 2 influenza B lineage viruses in the United States.Methods. Patients with acute cough illness for ≤7 days were prospectively enrolled and had swab samples obtained at outpatient clinics in 5 states. Influenza vaccination dates were confirmed by medical records. The vaccine effectiveness (VE) was estimated as [100% × (1 − adjusted odds ratio)] for vaccination in cases versus test-negative controls.Results. Influenza was detected in 2307 of 6452 patients (36%); 1292 (56%) had influenza A(H3N2), 582 (25%) had influenza B/Yamagata, and 303 (13%) had influenza B/Victoria. VE was 49% (95% confidence interval [CI], 43%–55%) overall, 39% (95% CI, 29%–47%) against influenza A(H3N2), 66% (95% CI, 58%–73%) against influenza B/Yamagata (vaccine lineage), and 51% (95% CI, 36%–63%) against influenza B/Victoria. VE against influenza A(H3N2) was highest among persons aged 50–64 years (52%; 95% CI, 33%–65%) and persons aged 6 months–8 years (51%; 95% CI, 32%–64%) and lowest among persons aged ≥65 years (11%; 95% CI, −41% to 43%). In younger age groups, there was evidence of residual protection from receipt of the 2011–2012 vaccine 1 year earlier.Conclusions. The 2012–2013 vaccines were moderately effective in most age groups. Cross-lineage protection and residual effects from prior vaccination were observed and warrant further investigation.
Background
During the 2014–15 US influenza season, expanded genetic characterization of circulating influenza A(H3N2) viruses was used to assess the impact of genetic variability of influenza A(H3N2) viruses on influenza vaccine effectiveness (VE).
Methods
A novel pyrosequencing assay was used to determine genetic group based on hemagglutinin (HA) gene sequences of influenza A(H3N2) viruses from patients enrolled US Flu Vaccine Effectiveness network sites. Vaccine effectiveness was estimated using a test-negative design comparing vaccination among patients infected with influenza A(H3N2) viruses and uninfected patients.
Results
Among 9710 enrollees, 1868 (19%) tested positive for influenza A(H3N2); genetic characterization of 1397 viruses showed 1134 (81%) belonged to one HA genetic group (3C.2a) of antigenically drifted H3N2 viruses. Effectiveness of 2014–15 influenza vaccination varied by A(H3N2) genetic group from 1% (95% confidence interval [CI], −14% to 14%) against illness caused by antigenically drifted A(H3N2) group 3C.2a viruses versus 44% (95% CI, 16% to 63%) against illness caused by vaccine-like A(H3N2) group 3C.3b viruses.
Conclusion
Effectiveness of 2014–15 influenza vaccination varied by genetic group of influenza A(H3N2) virus. Changes in hemagglutinin genes related to antigenic drift were associated with reduced vaccine effectiveness.
Antiviral treatment was prescribed infrequently among outpatients with influenza for whom therapy would be most beneficial; in contrast, antibiotic prescribing was more frequent. Continued efforts to educate clinicians on appropriate antibiotic and antiviral use are essential to improve healthcare quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.