SummaryRNA interference pathways use small RNAs to mediate gene silencing in eukaryotes. In addition to small interfering RNAs (siRNA) and microRNAs, several types of endogenously produced small RNAs play important roles in gene regulation, germ cell maintenance and transposon silencing 1 -4. Production of some of these RNAs requires the synthesis of aberrant RNAs (aRNAs) or pre-siRNAs, which are specifically recognized by RNA-dependent RNA polymerases (RdRPs) to make double stranded RNA (dsRNA). The mechanism for aRNA synthesis and recognition is largely unknown. Here we show that DNA damage induces the expression of the Argonaute protein QDE-2 and a novel class of small RNAs in the filamentous fungus Neurospora. This class of small RNAs, named qiRNAs for their association with QDE-2, are about 20-21 nt long (several nt shorter than Neurospora siRNAs) with a strong preference for uridine at the 5′ end and originate mostly from the ribosomal DNA locus. Production of qiRNAs requires the RdRP QDE-1, the Werner/Bloom RecQ DNA helicase homolog QDE-3 and dicers. qiRNA biogenesis also requires DNA damage-induced aRNAs as precursor, a process that is dependent on QDE-1 and QDE-3. Surprisingly, our results suggest that QDE-1 is the DNA-dependent RNA polymerase that produces aRNAs. In addition, the Neurospora RNAi mutants exhibit increased sensitivity to DNA damage, suggesting a role for qiRNAs in DNA damage response by inhibiting protein translation.In the filamentous fungus Neurospora crassa, the RNAi pathway is essential for both dsRNA and transgene-induced gene silencing (quelling) 5 . In the quelling pathway, QDE-1 and QDE-3 are thought to be involved in the generation of dsRNA 6 , 7. In addition, QDE-3 was previously shown to be involved in DNA repair 6. It has been proposed that a repetitive transgene leads to the production of transgene-specific aRNA, which is converted to dsRNA
SUMMARY The secondary metabolome of Basidiomycota represents a largely uncharacterized source of pharmaceutically relevant natural products. Terpenoids are the primary class of bioactive compounds isolated from mushrooms. The Jack O’Lantern mushroom Omphalotus olearius was identified 50 years ago as a prolific producer of anticancer illudin sesquiterpenoids, however to date there have been exceptionally few studies into the biosynthesis of these important compounds. Here we report the draft genome sequence of O. olearius, which reveals a diverse network of sesquiterpene synthases and two metabolic gene clusters associated with illudin biosynthesis. Their biochemical characterization enabled a comprehensive survey of all currently available Basidiomycota genomes, thereby creating a predictive resource for terpenoid natural product biosynthesis in these organisms. Our results will facilitate discovery and biosynthetic production of unique pharmaceutically relevant bioactive compounds from Basidiomycota.
Compartmentalized co-localization of enzymes and their substrates represents an attractive approach for multi-enzymatic synthesis in engineered cells and biocatalysis. Sequestration of enzymes and substrates would greatly increase reaction efficiency while also protecting engineered host cells from potentially toxic reaction intermediates. Several bacteria form protein-based polyhedral microcompartments which sequester functionally related enzymes and regulate their access to substrates and other small metabolites. Such bacterial microcompartments may be engineered into protein-based nano-bioreactors, provided that they can be assembled in a non-native host cell, and that heterologous enzymes and substrates can be targeted into the engineered compartments. Here, we report that recombinant expression of Salmonella enterica ethanolamine utilization ( eut ) bacterial microcompartment shell proteins in E. coli results in the formation of polyhedral protein shells. Purified recombinant shells are morphologically similar to the native Eut microcompartments purified from S. enterica . Surprisingly, recombinant expression of only one of the shell proteins (EutS) is sufficient and necessary for creating properly delimited compartments. Co-expression with EutS also facilitates the encapsulation of EGFP fused with a putative Eut shell-targeting signal sequence. We also demonstrate the functional localization of a heterologous enzyme (β-galactosidase) targeted to the recombinant shells. Together our results provide proof-of-concept for the engineering of protein nano-compartments for biosynthesis and biocatalysis.
Basidiomycota represent a diverse source of natural products, particularly the sesquiterpenoids. Recently, the genome sequencing, mining, and subsequent discovery of a suite of sesquiterpene synthases was described in Omphalotus olearius. A predictive framework was developed to facilitate the discovery of sesquiterpene synthases in Basidiomycota. Phylogenetic analyses indicated a conservation of both sequence and initial cyclization mechanisms used. Here, the first robust application of this predictive framework is reported. It is used to pursue and selectively identify sesquiterpene synthases that follow a 1,6-, 1,10-, and 1,11-cyclization mechanism in the crust fungus Stereum hirsutum. The successful identification and characterization of a 1,6- and a 1,10-cyclizing sesquiterpene synthase, as well as three 1,11-cyclizing Δ-6 protoilludene synthases, is described. This study verifies the accuracy and utility of the predictive framework as a roadmap for the discovery of specific sesquiterpene synthases from Basidiomycota, representing an important step forward in natural product discovery.
Isolation of metastatic circulating tumor cells (CTCs) from cancer patients is of high value for disease monitoring and molecular characterization. Despite the development of many new CTC isolation platforms in the last decade, their isolation and detection has remained a challenge due to the lack of specific and sensitive markers. In this feasibility study, we present a method for CTC isolation based on the specific binding of the malaria rVAR2 protein to oncofetal chondroitin sulfate (ofCS). We show that rVAR2 efficiently captures CTCs from hepatic, lung, pancreatic, and prostate carcinoma patients with minimal contamination of peripheral blood mononuclear cells. Expression of ofCS is present on epithelial and mesenchymal cancer cells and is equally preserved during epithelial–mesenchymal transition of cancer cells. In 25 stage I–IV prostate cancer patient samples, CTC enumeration significantly correlates with disease stage. Lastly, rVAR2 targets a larger and more diverse population of CTCs compared to anti-EpCAM strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.