MicroRNA mir-9 is speculated to be involved in insulin secretion because of its ability to regulate exocytosis. Sirt1 is an NAD-dependent protein deacetylase and a critical factor in the modulation of cellular responses to altered metabolic flux. It has also been shown recently to control insulin secretion from pancreatic β-islets. However, little is known about the regulation of Sirt1 and mir-9 levels in pancreatic β-cells, particularly during glucose-dependent insulin secretion. In this article, we report that mir-9 and Sirt1 protein levels are actively regulated in vivo in β-islets during glucose-dependent insulin secretion. Our data also demonstrates that mir-9 targets and regulates Sirt1 expression in insulin-secreting cells. This targeting is relevant in pancreatic β-islets, where we show a reduction in Sirt1 protein levels when mir-9 expression is high during glucose-dependent insulin secretion. This functional interplay between insulin secretion, mir-9 and Sirt1 expression could be relevant in diabetes. It also highlights the crosstalk between an NAD-dependent protein deacetylase and microRNA in pancreatic β-cells.
Purpose: PARP inhibitors (PARPi) are standard-of-care therapy for high-grade serous ovarian cancer (HGSOC). We investigated combining cediranib (antiangiogenic) with olaparib (PARPi) at emergence of PARPi resistance.Patients and Methods: The proof-of-concept EVOLVE study (NCT-02681237) assessed cediranib-olaparib combination therapy after progression on a PARPi. Women with HGSOC and radiographic evidence of disease progression were enrolled into one of three cohorts: platinum sensitive after PARPi; platinum resistant after PARPi; or progression on standard chemotherapy after progression on PARPi (exploratory cohort). Patients received olaparib tablets 300 mg twice daily with cediranib 20 mg once daily until progression or unacceptable toxicity. The coprimary endpoints were objective response rate (RECIST v1.1) and progression-free survival (PFS) at 16 weeks. Archival tissue (PARPi-na€ ve) and baseline biopsy (post-PARPi) samples were mandatory. Genomic mechanisms of resistance were assessed by whole-exome and RNA sequencing.Results: Among 34 heavily pretreated patients, objective responses were observed in 0 of 11 (0%) platinum-sensitive patients, 2 of 10 (20%) platinum-resistant patients, and 1 of 13 (8%) in the exploratory cohort. Sixteen-week PFS rates were 55%, 50%, and 39%, respectively. The most common grade 3 toxicities were diarrhea (12%) and anemia (9%). Acquired genomic alterations at PARPi progression were reversion mutations in BRCA1, BRCA2, or RAD51B (19%); CCNE1 amplification (16%); ABCB1 upregulation (15%); and SLFN11 downregulation (7%). Patients with reversion mutations in homologous recombination genes and/or ABCB1 upregulation had poor outcomes.Conclusions: This is currently the largest post-PARPi study identifying genomic mechanisms of resistance to PARPis. In this setting, the activity of cediranib-olaparib varied according to the PARPi resistance mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.