We report the effects of tunnel coupling on the Quantum-Confined Stark Effect (QCSE) for excitons in InAs/GaAs coupled quantum dots (CQDs). As the barrier separating the dots is reduced, the zero-field dipole moment and the polarizability are both found to increase. This systematic variation as a function of barrier thickness is due to factors including the formation of molecular wavefunctions, the electron/hole effective masses, and the CQD structural properties. The dipole moment for the interdot exciton is found to be up to 100 times larger than that of the intradot exciton resulting in a predominantly linear shift with field. The ability to control the QCSE of the exciton in a single CQD could be useful for a new class of single photon optical switches and tunable emitters.
Coupled quantum dots (CQDs) can provide a sensitive probe of the electric field within a device. With non-resonant excitation above the wetting layer (WL) energy, optical generation of an electric field within the CQD structure was observed. By alternating this non-resonant excitation the temporal response of the optically generated electric field was measured. Decay of this field was measured to be on the order of 110-140 μsec whereas the onset of the optically generated electric field was observed to be less than the temporal resolution of our experiment (7.5 μsec). This may provide a means for fast, non-contact, electric field modulation techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.