The review focuses on some of the high value-end biocommodities, such as fermented beverages, single-cell proteins, single-cell oils, biocolors, flavors, fragrances, polysaccharides, biopesticides, plant growth regulators, bioethanol, biogas and biohydrogen, developed from the microbial processing of fruit and vegetable wastes. Microbial detoxification of fruit and vegetable processing effluents is briefly described. The advances in genetic engineering of microorganisms for enhanced yield of the above-mentioned biocommodities are elucidated with selected examples. The bottleneck in commercialization, integrated approach for improved production, techno-economical feasibility and real-life uses of some of these biocommodities, as well as research gaps and future directions are discussed.
Background/Objectives. The aim of this study was to evaluate oxidant and antioxidant status in children with different grades of Protein Energy Malnutrition (PEM). Subjects/Methods. A total of two hundred fifty (250) children (age range: 6 months to 5 years) living in eastern UP, India, were recruited. One hundred and ninety-three (193) of these children had different grades of PEM (sixty-five (65) children belong to mild, sixty (60) to moderate, and sixty-eight (68) to severe group). Grading in group was done after standardization in weight and height measurements. Fifty-seven (57) children who are age and and sex matched, healthy, and well-nourished were recruited from the local community and used as controls after checking their protein status (clinical nutritional status) with height and weight standardization. Redox homeostasis was assessed using spectrophotometric/colorimetric methods. Results. In our study, erythrocyte glutathione (GSH), plasma Cu, Zn-superoxide dismutase (Cu,Zn-SOD,EC 1.15.1.1), ceruloplasmin (Cp), and ascorbic acid were significantly (P < 0.001) more decreased in children with malnutrition than controls. Plasma malondialdehyde (MDA), and protein carbonyl (PC) were significantly (P < 0.001) raised in cases as compared to controls. Conclusion. Stress is created as a result of PEM which is responsible for the overproduction of reactive oxygen species (ROSs). These ROSs will lead to membrane oxidation and thus an increase in lipid peroxidation byproducts such as MDA and protein oxidation byproducts such as PC mainly. Decrease in level of antioxidants suggests an increased defense against oxidant damage. Changes in oxidant and antioxidant levels may be responsible for grading in PEM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.