The mammalian cytoskeletal proteins β- and γ-actin are highly homologous, but only β-actin is N-terminally arginylated, which regulates its function. Here we examined the metabolic fate of exogenously expressed arginylated and non-arginylated actin isoforms. Arginylated γ-actin, unlike β-, was highly unstable and was selectively ubiquitinated and degraded in vivo. This instability was regulated by the differences in the coding sequence between the two actin isoforms, which conferred different translation rates. γ-actin was translated more slowly than β-actin, and this slower processing resulted in the exposure of a normally hidden lysine residue for ubiquitination, leading to the preferential degradation of γ-actin upon arginylation. This degradation mechanism, coupled to nucleotide coding sequence, may regulate protein arginylation in vivo.
Summary Posttranslational arginylation mediated by arginyltransferase (ATE1) plays an important role in cardiovascular development, cell motility and regulation of cytoskeleton and metabolic enzymes. This protein modification was discovered decades ago, however, the arginylation reaction and the functioning of ATE1 remained poorly understood due to the lack of good biochemical models. Here we report the development of an in vitro arginylation system, in which ATE1 function and molecular requirements can be tested using purified recombinant ATE1 isoforms supplemented with a controlled number of components. Our results show that arginylation reaction is a self-sufficient, ATP-independent process that can affect different sites in a polypeptide, and that arginyltransferases form different molecular complexes in vivo, associate with components of the translation machinery, and have distinct, partially overlapping subsets of substrates, suggesting that these enzymes play different physiological functions.
Japanese encephalitis virus or Rabies virus results in the activation of a gene encoding a novel, non-coding RNA (ncRNA) in the mouse central nervous system. This transcript, named virus-inducible ncRNA (VINC), is identical to a 3?18 kb transcript expressed in mouse neonate skin (GenBank accession no. AK028745) that, together with a number of unannotated cDNAs and expressed sequence tags, is grouped in the mouse unigene cluster Mm281895. VINC is expressed constitutively in early mouse embryo and several adult non-neuronal mouse tissues, as well as a murine renal adenocarcinoma (RAG) cell line. Northern blotting of nuclear and cytoplasmic RNAs revealed that VINC is localized primarily in the nucleus of RAG cells and is thus a novel member of the nuclear ncRNA family. Non-protein-coding eukaryotic genome sequences, often referred to as 'junk DNA', are estimated to encode several non-coding RNAs (ncRNAs), which may account for nearly 98 % of all genomic output in humans (http://research. imb.uq.edu.au/rnadb). In addition to the classical ncRNAs, such as rRNA, tRNA and small nucleolar RNAs, the eukaryotic genome encodes two distinct categories of ncRNAs, referred to as small ncRNAs and long mRNA-like ncRNAs. The long ncRNAs, which are transcribed by RNA polymerase II, spliced and polyadenylated, are implicated in a number of regulatory processes, such as imprinting, X-chromosome inactivation, DNA demethylation, transcription, RNA interference, chromatin-structure dynamics and antisense regulation. In addition, long mRNA-like ncRNAs such as MALAT-1, BC-1 and BC-200 serve as prognostic markers for cancer, whilst the prion-associated RNAs LIT-1, SCA-8 etc. are implicated in a number of neurological disorders (Costa, 2005). Thus, identification and characterization of novel ncRNAs and constant updating of the mammalian RNome are essential for the complete deciphering of genome biology and understanding mammalian gene regulation.
Actin arginylation regulates lamella formation in motile fibroblasts, but the underlying molecular mechanisms are unknown. Here, we found that actin regulation by arginylation affects its biochemical properties and binding of actin-associated proteins, modulating the overall structural organization of actin filaments in the cell.
Coordinated cell migration during development is crucial for morphogenesis and largely relies on cells of the neural crest lineage that migrate over long distances to give rise to organs and tissues throughout the body. Recent studies of protein arginylation implicated this poorly understood posttranslational modification in the functioning of actin cytoskeleton and in cell migration in culture. Knockout of arginyltransferase (Ate1) in mice leads to embryonic lethality and severe heart defects that are reminiscent of cell migration–dependent phenotypes seen in other mouse models. To test the hypothesis that arginylation regulates cell migration during morphogenesis, we produced Wnt1-Cre Ate1 conditional knockout mice (Wnt1-Ate1), with Ate1 deletion in the neural crest cells driven by Wnt1 promoter. Wnt1-Ate1 mice die at birth and in the first 2–3 weeks after birth with severe breathing problems and with growth and behavioral retardation. Wnt1-Ate1 pups have prominent defects, including short palate and altered opening to the nasopharynx, and cranial defects that likely contribute to the abnormal breathing and early death. Analysis of neural crest cell movement patterns in situ and cell motility in culture shows an overall delay in the migration of Ate1 knockout cells that is likely regulated by intracellular mechanisms rather than extracellular signaling events. Taken together, our data suggest that arginylation plays a general role in the migration of the neural crest cells in development by regulating the molecular machinery that underlies cell migration through tissues and organs during morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.