We address the effect of orientation of the accretion disk plane and the geometry of the broad line region (BLR) as part of an effort to understand the distribution of quasars in optical plane of the quasar main sequence. We utilize the photoionization code CLOUDY to model the BLR incorporating the grossly underestimated form factor (f ). Treating the aspect of viewing angle appropriately, we confirm the dependence of the R FeII sequence on L/L Edd and on the related observational trends -as a function of the SED shape, cloud density and composition, verified from prior observations. Sources with R FeII in the range 1 -2 (about 10% of all quasars, the so-called extreme Population A [xA] quasars) are explained as sources of high, and possibly extreme Eddington ratio along the R FeII sequence. This result has important implication for the exploitation of xA sources as distance indicators for Cosmology. FeII emitters with R FeII > 2 are very rare (<1% of all type 1 quasars). Our approach also explains the rarity of these highest FeII emitters as extreme xA sources, and constrains the viewing angle ranges with increasing Hβ FWHM.
The concept of the quasar main sequence is very attractive since it stresses correlations between various parameters and implies the underlying simplicity. In the optical plane defined by the width of the Hβ line and the ratio of the equivalent width of the Fe II to Hβ observed objects form a characteristic pattern. In this paper, we use a physically motivated model to explain the distribution of quasars in the optical plane. Continuum is modelled as an accretion disk with a hard X-ray power law uniquely tight to the disk at the basis of observational scaling, and the Broad Line Region distance is determined also from observational scaling. We perform the computations of the FeII and Hβ line production with the code CLOUDY. We have only six free parameters for an individual source: maximum temperature of the accretion disk, Eddington ratio, cloud density, cloud column density, microturbulence, and iron abundance, and only the last four remain as global parameters in our modelling of the whole sequence. Our theoretically computed points cover well the optical plane part populated with the observed quasars, particularly if we allow for super-Solar abundance of heavy elements. Explanation of the exceptionally strong Fe II emitter requires a stronger contribution from the dark sides of the clouds. Analyzing the way how our model covers the optical plane we conclude that there is no single simple driver behind the sequence, as neither the Eddington ratio nor broad band spectrum shape plays the dominant role. Also, the role of the viewing angle in providing the dispersion of the quasar main sequence is apparently not as strong as expected.
We report 6 yr monitoring of a distant bright quasar CTS C30.10 (z = 0.90052) with the Southern African Large Telescope (SALT). We measured the rest-frame time-lag of 562±2 days between the continuum variations and the response of the Mg II emission line, using the Javelin approach. More conservative approach, based on five different methods, imply the time delay of 564 +109 −71 days. This time delay, combined with other available measurements of Mg II line delay, mostly for lower redshift sources, shows that the Mg II line reverberation implies a radius-luminosity relation very similar to the one based on a more frequently studied Hβ line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.