Palm fruit juice (PFJ) containing oil palm phenolics is obtained as a by-product from oil palm (Elaeis guineensis) fruit milling. It contains shikimic acid, soluble fibre and various phenolic acids including p-hydroxybenzoic acid and three caffeoylshikimic acid isomers. PFJ has also demonstrated beneficial health properties in various biological models. Increasing concentrations of PFJ and different PFJ fractions were used to assess growth dynamics and possible anti-ageing properties in fruit flies (Drosophila melanogaster) genotype w. Microarray gene expression analysis was performed on whole fruit fly larvae and their fat bodies, after the larvae were fed a control Standard Brandeis Diet (SBD) with or without PFJ. Transcripts from Affymetrix GeneChips were utilised to identify the possible mechanisms involved, with genes having fold changes > |1.30| and p < 0.05 considered differentially expressed. PFJ dose-dependently delayed larval growth and pupation, but not percent eclosion from pupae. Eclosed male fruit flies fed PFJ or its fractions during the larval stage tended to have 20-40% improved survival ratings over controls when allowed to age on the control diet (SBD). Microarray analysis of whole fruit fly larvae revealed that 127 genes were up-regulated, while 67 were down-regulated by PFJ. Functional analysis revealed transport and metabolic processes were up-regulated, while development and morphogenesis processes, including the nutrient-sensing Tor gene, were down-regulated by PFJ, whereas microarray analysis of larval fat bodies found 161 genes were up-regulated, while 84 genes were down-regulated. Genes involved in defence response and determination of adult lifespan, including those encoding various heat shock proteins and the antioxidant enzyme Sod2, were up-regulated, while cell cycle and growth genes were down-regulated. Thus, PFJ supplementation lengthened the growth stages in fruit fly larvae that was reflected in extended ageing of adult flies, suggesting that larval expression of hormetic stress response genes was linked to subsequent ageing and longevity.
Transplantation of human embryonic stem cell (hESC)-derived neural progenitors is a potential treatment for neurological disorders, but relatively little is known about the time course for human neuron maturation after transplantation and the emergence of morphological and electrophysiological properties. To address this gap, we transplanted hESC-derived human GABAergic interneuron progenitors into the mouse hippocampus, and then characterized their electrophysiological properties and dendritic arborizations after transplantation by means of
ex vivo
whole-cell patch clamp recording, followed by biocytin staining, confocal imaging and neuron reconstruction software. We asked whether particular electrophysiological and morphological properties showed maturation-dependent changes after transplantation. We also investigated whether the emergence of particular electrophysiological properties were linked to increased complexity of the dendritic arbors. Human neurons were classified into five distinct neuronal types (Type I-V), ranging from immature to mature fast-spiking interneurons. Hierarchical clustering of the dendritic morphology and Sholl analyses suggested four morphologically distinct classes (Class A-D), ranging from simple/immature to highly complex. Incorporating all of our data regardless of neuronal classification, we investigated whether any electrophysiological and morphological features correlated with time post-transplantation. This analysis demonstrated that both dendritic arbors and electrophysiological properties matured after transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.