The need for renewable energy sources is on the rise because of the acute energy crisis in the world today. This describes the design, optimization, and evaluation of the power electronics circuitry for a low-power portable thermophotovotaic (TPV) generator system in mat lab. TPV system is based on a silicon micro-reactor design and low-band gap photovoltaic (PV) diodes. We outline critical system-level challenges associated with TPV power generation, and propose a power electronics architecture that addresses these challenges. We present experimental data from a compact, highly efficient peak power tracker and show how the proposed architecture enables increased energy extraction compared to conventional methods. The operation of the power tracker is verified with low-band gap PV cells illuminated by a quartz halogen lamp producing a PV diode output power of 0.5 W, and above 99% tracking efficiency is demonstrated. Additionally, the complete system operation is verified with the power tracker connected to GaInAsSb PV diodes silicon and a micro-reactor, producing 150 mW of electrical power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.