Collecting and labeling of good balanced training data are usually very difficult and challenging under real conditions. In addition to classic modeling methods, Generative Adversarial Networks (GANs) offer a powerful possibility to generate synthetic training data. In this paper, we evaluate the hybrid usage of real-life and generated synthetic training data in different fractions and the effect on model performance. We found that a usage of up to 75% synthetic training data can compensate for both time-consuming and costly manual annotation while the model performance in our Deep Learning (DL) use case stays in the same range compared to a 100% share in hand-annotated real images. Using synthetic training data specifically tailored to induce a balanced dataset, special care can be taken concerning events that happen only on rare occasions and a prompt industrial application of ML models can be executed without too much delay, making these feasible and economically attractive for a wide scope of industrial applications in process and manufacturing industries. Hence, the main outcome of this paper is that our methodology can help to leverage the implementation of many different industrial Machine Learning and Computer Vision applications by making them economically maintainable. It can be concluded that a multitude of industrial ML use cases that require large and balanced training data containing all information that is relevant for the target model can be solved in the future following the findings that are presented in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.