Programmed cell death is an evolutionarily conserved cell death process that plays a major role during normal development and homeostasis. In many cases, the ordered execution of this internal death programme leads to typical morphological and biochemical changes that have been termed apoptosis. The crucial role of this mode of cell death in the pathogenesis of diverse human diseases including cancer, acquired immunodeficiency syndrome, neurodegeneratives disorders, atherosclerosis and cardiomyopathy is now supported by a wealth of data. In adult mammals, including humans, germ cell death is conspicuous during normal spermatogenesis and plays a pivotal role in sperm output. Withdrawal of gonadotrophins and testosterone further enhances the degeneration of germ cells in the testis. The availability of a quantitative method for analysing the testicular DNA fragmentation and in situ methods to localize specific germ cells undergoing apoptosis, either spontaneously or in response to a variety of death triggering signals, opens new avenues in the understanding of the significance of germ cell apoptosis during normal and abnormal states of spermatogenesis. A growing body of evidence demonstrates that both spontaneous (during normal spermatogenesis) and accelerated germ cell death triggered by deprivation of the gonadotrophic support or moderately increased scrotal temperature in adult rats occur almost exclusively via apoptosis. Although there has been spectacular progress in the understanding of the molecular mechanisms of apoptosis in various systems other than spermatogenesis, elucidation of the biochemical and molecular mechanisms by which germ cell apoptosis is regulated has only just begun. It is likely that germ cell apoptosis is controlled in a cell-type specific fashion, but the basic elements of the death machinery may be universal. In addition, there is increasing evidence that homozygous disruption of a number of genes in mice results in infertility through accelerated germ cell apoptosis. Manipulation of spermatogenesis by survival factor(s) deprivation or increases in extrinsic death signals in loss-of-function or gain-of-function mouse models provides a basis for further attempts to define the intrinsic regulation of various death-related genes by external death signals. Such information is crucial for effective management of male factor infertility as well as more targeted approaches to male contraception.
Context:In the absence of panhypopituitarism and low serum IGF-I levels, the diagnosis of adult GH deficiency (AGHD) requires confirmation with a GH stimulation test. Macimorelin is a novel, orally active ghrelin mimetic that stimulates GH secretion.Objective:The objective of the study was to determine the diagnostic efficacy and safety of macimorelin in AGHD.Design:This was a multicenter open-label study comparing the diagnostic accuracy of oral macimorelin with that of arginine+GHRH in AGHD patients and healthy, matched controls. After 43 AGHD patients and 10 controls were tested, the GHRH analog Geref Diagnostic [GHRH(1–29)NH2] became unavailable in the United States. The study was completed by testing 10 additional AGHD patients and 38 controls with macimorelin alone.Main Outcome Measure:Peak GH area under the receiver operating characteristic curve after macimorelin was measured.Results:Fifty AGHD subjects and 48 controls were evaluated. Peak GH levels in AGHD patients and controls after macimorelin were 2.36 ± 5.69 and 17.71 ± 19.11 ng/mL, respectively (P < .0001). With macimorelin, the receiver operating characteristic analysis yielded an optimal GH cut point of 2.7 ng/mL, with 82% sensitivity, 92% specificity, and 13% misclassification rate. For subjects receiving both tests, macimorelin showed discrimination comparable with arginine+GHRH (area under the receiver operating characteristic curve 0.99 vs 0.94, respectively, P = .29). Obesity (body mass index > 30 kg/m2) was present in 58% of subjects, and peak GH levels were inversely associated with body mass index in controls (r = −0.37, P = .01). Using the separate cut points of 6.8 ng/mL for nonobese and 2.7 for obese subjects reduced the misclassification rate to 11%. Only 1 drug-related serious adverse event, an asymptomatic QT interval prolongation on the electrocardiogram, was reported.Conclusion:Oral macimorelin is safe, convenient, and effective in diagnosing AGHD with accuracy comparable with the arginine+GHRH test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.