Background: Although there is general consensus about the behavioural, clinical and sociodemographic variables that are risk factors for reoffending, optimal statistical modelling of these variables is less clear. Machine learning techniques offer an approach that may provide greater accuracy than traditional methods. Aim: To compare the performance of advanced machine learning techniques (classification trees and random forests) to logistic regression in classifying correlates of rearrest among adult probationers and parolees in the United States. Method: Data were from the subgroup of people on probation or parole who had taken part in the National Survey on Drug Use and Health for the years 2015-2019. We compared the performance of logistic regression, classification trees and random forests, using receiver operating characteristic curves, to examine the correlates of arrest within the past 12 months. Results: We found that machine learning techniques, specifically random forests, possessed significantly greater accuracy than logistic regression in classifying correlates of arrest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.