Desert locusts, Schistocerca gregaria, show extreme phenotypic plasticity, transforming between a little-seen solitarious phase and the notorious swarming gregarious phase depending on population density. An essential tipping point in the process of swarm formation is the initial switch from strong mutual aversion in solitarious locusts to coherent group formation and greater activity in gregarious locusts. We show here that serotonin, an evolutionarily conserved mediator of neuronal plasticity, is responsible for this behavioral transformation, being both necessary if behavioral gregarization is to occur and sufficient to induce it. Our data demonstrate a neurochemical mechanism linking interactions between individuals to large-scale changes in population structure and the onset of mass migration.
Interspecific comparisons of brain structure can inform our functional understanding of brain regions, identify adaptations to species-specific ecologies, and explore what constrains adaptive changes in brain structure, and coevolution between functionally related structures. The value of such comparisons is enhanced when the species considered have known ecological differences. The Lepidoptera have long been a favored model in evolutionary biology, but to date descriptions of brain anatomy have largely focused on a few commonly used neurobiological model species. We describe the brain of Godyris zavaleta (Ithomiinae), a member of a subfamily of Neotropical butterflies with enhanced reliance on olfactory information. We demonstrate for the first time the presence of sexually dimorphic glomeruli within a distinct macroglomerular complex (MGC) in the antennal lobe of a diurnal butterfly. This presents a striking convergence with the well-known moth MGC, prompting a discussion of the potential mechanisms behind the independent evolution of specialized glomeruli. Interspecific analyses across four Lepidoptera further show that the relative size of sensory neuropils closely mirror interspecific variation in sensory ecology, with G. zavaleta displaying levels of sensory investment intermediate between the diurnal monarch butterfly (Danaus plexippus), which invests heavily in visual neuropil, and night-flying moths, which invest more in olfactory neuropil. We identify several traits that distinguish butterflies from moths, and several that distinguish D. plexippus and G. zavaleta. Our results illustrate that ecological selection pressures mold the structure of invertebrate brains, and exemplify how comparative analyses across ecologically divergent species can illuminate the functional significance of variation in brain structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.