International audienceWe report a chalcogenide suspended-core fiber with a record Kerr-nonlinearity of 46 000 W-1km-1 and attenuation of 0.9 dB/m. Four-wave-mixing efficiencies of -5.6 dB at 10 GHz and -17.5 dB at 42.7 GHz are obtained
We propose a new solution for modal decomposition in multimode fibers, based on a spectral and spatial imaging technique. The appearance of spurious modes in the spectral and spatial processing of the images at the output of the fiber under test when it has more than two modes is demonstrated theoretically. The new method, which allows us to identify spurious modes, is more accurate, simpler, and faster than previously reported methods. For demonstration, measurements in a standard step-index multimode fiber and a small-core microstructured fiber are carried out successfully.
We propose a network-embedded colorless self-tuning transmitter for wavelength division multiplexed (WDM) networks based on self-seeding in reflective semiconductor optical amplifiers (RSOAs). We compare up to a 10-Gb/s data rate in either O-band or C-band operation. In particular, the transmitter exploits a two-Faraday rotator configuration to ensure polarization-insensitive operation and allowing for the exploitation of high-gain C-and O-band RSOAs, which present a very high polarization-dependent gain. Two different multiplexers and various lengths of drop fibers constituted the networkembedded transmitters in order to evaluate various dispersion load influence on cavity buildup. Moreover, transmission over standard single-mode feeder fiber has been evaluated both at 2.5 and 10 Gb/s to compare the performance in both bands, confirming the absence of chromatic dispersion penalties for the O-band operation. Index Terms-Chromatic dispersion; Colorless optical transmitter; Reflective semiconductor optical amplifier (RSOA); WDM passive optical networks (PON).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.