<p>The movement of gold prices in the previous period was crucial for investors. However, fluctuations in gold price movements always occur. The problem in this study is how to apply multiple linear regression (MRL) in predicting artificial neural networks (ANN) of gold prices. MRL is mathematical calculation technique used to measure the correlation between variables. The results of the MRL analysis ensure that the network pattern that is formed can provide precise and accurate prediction results. In addition, this study aims to develop a predictive pattern model that already exists. The results of the correlation test obtained by MRL provide a correlation of 62% so that the test results are said to have a significant effect on gold price movements. Then the prediction results generated using an ANN has a mean squared error (MSE) value of 0.004264%. The benefits obtained in this study provide an overview of the gold price prediction pattern model by conducting learning and approaches in testing the accuracy of the use of predictor variables.</p>
Proses penuaan akan menyebabkan perubahan anatomis, fisiologis dan biokimia pada tubuh, sehingga akan mempengaruhi fungsi dan kemampuan tubuh secara keseluruhan. untuk mendiagnosis penyakit radang sendi memerlukan sistem yang mampu membantu untuk mendiagnosis penyakit radang sendi (Arthritis) yang didasarkan pada basis pengetahuan yang dinamis. Basis pengetahuan ini berisi pengetahuan yang didapatkan dari berbagai sumber diantaranya dari pengalaman pakar dalam bidangnya dan juga buku yang berhubungan dengan diagnosis penyakit radang sendi yang kemudian dikumpulkan ke dalam basis data yang diperlukan untuk pengambilan keputusan. Dalam sistem ini akan digunakan metode certainty factor dengan mesin inferensi forward chaining. Dengan pembuatan sistem pakar ini diharapkan akan dapat bermanfaat bagi masyarakat banyak dan dapat mengetahui dengan jelas tentang penyakit radang sendi dari gejala dan solusinya. Kata Kunci : radang sendi, arthritis, certainty factor
Coronavirus 2019 or Covid-19 is a major problem for health, and it is a global pandemic that has to be controlled. Covid-19 spread so fast to 196 countries, including Indonesia. The government has to study the pattern and predict its spread in order to make policies that will be implemented to tackle the spread of some of the existing data. Therefore this research was conducted as a precautionary measure against the Covid-19 pandemic by predicting the rate of spread of Covid-19. The application of the machine learning method by combining the k-means clustering algorithm in determining the cluster, k-nearest neighbor for prediction and Iterative Dichotomiser (ID3) for mapping patterns is expected to be able to predict the level of spread of Covid-19 in Indonesia with an accuracy rate of 90%.
AbstrakPerkembangan alat teknologi akuisisi citra medis, satu diantaranya adalah teknologi yang lazim disebut CT-scan. CT-Scan (Computed Tomography Scan) adalah prosedur untuk mendapatkan gambaran dari berbagai area kecil dari tulang termasuk tengkorak kepala dan otak. Citra hasil akuisisi atau rekaman CT-Scan dapat mebantu memperjelas adanya dugaan yang kuat tentang kelainan yang terjadi pada otak. Kualitas citra dapat dilakukan dengan proses mengubah citra menjadi citra baru sesuai kebutuhan, salah satu cara seperti fungsi transformasi, operasi matematis dan pemfilteran. Peningkatan kualitas citra CT-Scan diperlukan untuk objek keputusan medis yang mempunyai kualitas tidak baik, misalnya citra mengalami derau (noise), citra terlalu terang atau gelap, citra kurang tajam, dan kabur. Proses Peningkatan kualitas citra dapat dilakukan dengan menerapkan salah satu metode pemfilteran, untuk memperbaiki kualitas citra agar dihasilkan citra yang lebih baik dari citra aslinya. Metode gaussian filter untuk mengurangi noise speckle dan poisson pada citra otak pada CT-Scan. Pada citra noise gaussian, standar deviasi yang terbaik dalam mengurangi noise bernilai satu. Namun untuk citra noise speckle dan poisson nilai standar tidak dapat mengurangi noise tersebut. Hal ini dikarenakan standar deviasi adalah parameter dalam proses gaussian filter hanya dapat untuk noise Gaussian normal, untuk mengurangi noise sebaran tidak normal (non-linier) digunakan median filter. Kelemahan gaussian filter pada noise nilai parameter tidak stabil (non-linier) dapat diatasi pada filter median. Dari hasil penggabungan filter gaussian dan filter median filter dapat meningkatkan kualitas citra dan menguranggi noise lebih baik sebaran normal dan tidak normal. AbstractThe development of medical image acquisition technology tools, one of which is the technology commonly called CT scan. CT-Scan (Computed Tomography Scan) is a procedure to get a picture of various small areas of bone including the skull and brain. Image acquisition results or CT-Scan recordings can help clarify the existence of strong suspicions about abnormalities that occur in the brain. Image quality can be done by the process of changing the image into a new image as needed, one way such as the transformation function, mathematical operations and filtering. Increasing the quality of CT-Scan images is needed for medical decision objects that have poor quality, for example images experience noise (noise), images are too bright or dark, images are less sharp, and blurred. The process of improving image quality can be done by applying one of the filtering methods, to improve image quality to produce a better image than the original image. Gaussian filter method to reduce speckle and poison noise in brain images on CT scan. In the Gaussian noise image, the best standard deviation in reducing noise is one. However, for speckle noise images and standard poison values it cannot reduce the noise. This is because the standard deviation is a parameter in the Gaussian filter process that can ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.