Wireless Fidelity (Wi-Fi) is the modern telecommunication technology nowadays being so widely used and developed at operating frequency of 2.4 GHz, that needs microstrip antenna as best suited supporting means for transmitting and receiving data signals as well at its wave transceiver subsystem. The proposed antenna design were consists of four elements rectangular patch antenna with peripheral slits technique arranged in a linear array of 2x2 operating at the frequency of 2.4 GHz until 2.5 GHz. In addition to that, the feeding technique used in this research is microstrip fed line. The simulation from this research resulted in reducing the size of related antenna dimension up to 17% compared to that of four elements array without peripheral slits. It is also apparent that the bandwidth of the proposed antenna is 320 MHz (2.253 GHz–2.573 GHz) which is equivalent to bandwidth increase percentage of 13.07%, The simulation results in the center of frequency 2.448 GHz obtained return loss of -26.14 dB with a VSWR of 1.104. The measurement results obtained bandwidth of the proposed antenna is 150 MHz (2.424 GHz–2.574 GHz) which is equivalent to 12% increase of bandwidth percentage. The results of measurements process at the center of frequency 2.448 GHz obtained value of return loss of -16.88 dB with VSWR of 1.304.
This paper proposed new design of compact microstrip antenna using fractal sierpenski carpet method for Wireless Fidelity application at working frequency of 2400 MHz. The proposed antenna using FR4 Epoxy with (εr) of 4.3, substrate thickness (h) of 1.6 mm and loss tangent (tan δ) of 0.0265. Antenna is designed using AWR Microwave Office software.The sierpenski carpet method is used in order to reduce the dimensions of the microstrip antenna to become more compact. From the measurement results obtained reflection coefficient value-26.077 dB, VSWR 1.104 at working frequency of 2400 MHz frequency with a bandwidth of 127 MHz (2338 MHz-2465 MHz). Beside that, by using fractal sierepenski carpet method, microstrip antenna dimension was reduced until 47.80% compared to conventional rectangular microstrip antenna.
ABSTRAKPenelitian ini mengusulkan desain antena mikrostrip array empat elemen dengan polarisasi melingkar pada frekuensi kerja 2300 MHz untuk aplikasi 4G/LTE. Antena telah dirancang dan dipabrikasi menggunakan substrat jenis FR-4 Epoxy dengan nilai konstanta dielektrik (Ɛr) = 4.3, ketebalan substrat (h) = 1.6 mm dan loss tangen (tan δ) = 0.0265 dengan pencatu microstrip line. Polarisasi melingkar dengan axial ratio ≤ 3 dB dihasilkan dengan menggunakan metode truncated corner sedangkan untuk meningkatkan nilai gain digunakan metode array empat elemen. Dari hasil proses pengukuran diperoleh nilai koefisien refleksi sebesar -16.52 dB, VSWR sebesar 1.37 pada frekuensi kerja 2300 MHz dengan bandwidth yang diperoleh dari hasil pengukuran adalah 400 MHz (2050 MHz - 2450 MHz). Metode truncated corner berhasil menghasilkan polarisasi melingkar dengan nilai axial ratio 1.745 dB dan berhasil menghasilkan nilai gain sebesar 9.04 dB pada frekuensi kerja 2300 MHz untuk aplikasi LTE.Kata kunci: Antena, mikrostrip, koefisien refleksi, array, truncated corner ABSTRACTThis research proposed a four-element microstrip array antenna design withcircular polarization at a working frequency of 2300 MHz for 4G / LTEapplications. The antenna has been designed and fabricated using a FR-4 Epoxy substrate with a dielectric constant value (Ɛr) = 4.3, substrate thickness (h) = 1.6 mm and tangent loss (tan δ) = 0.0265 with microstrip line feeding. The circular polarization with axial ratio ≤3 dB was generated using the truncated corner method while for increasing the gain value used the four element array method. From the result of the measurement process, the reflection coefficient value is obtained -16.52 dB, VSWR of 1.37 at 2300 MHz working frequency with bandwidth obtained from the measurement result is 400 MHz (2050 MHz - 2450 MHz). The truncated corner method succeeded in generating a circular polarization with the axial ratio of 1.745 dB and succeeded to obtain the gain of 9.04 dB at work frequency of 2300 MHz for LTE application. Keywords: Antena, microstrip, reflection coefficient, array, truncated corner
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.