Plants have played an important role over the centuries in providing products that have been used to help combat ailments and diseases. Many products originating from fresh, dried-plant materials, or extracts are utilized as community remedies in traditional practices or even in modern medicine. The Annonaceae family contains different types of bioactive chemical properties, such as alkaloids, acetogenins, flavonoids, terpenes, and essential oil, meaning the plants in this family are potential therapeutic agents. Belonging to the Annonaceae family, Annona muricata Linn. has recently attracted the attention of scientists for its medicinal value. It has been utilized as a medicinal remedy since ancient times to treat and improve various diseases, for example, diabetes mellitus, hypertension, cancer, and bacterial infections. This review, therefore, highlights the important characteristic and therapeutic effect of A. muricata along with future perspectives on its hypoglycemic effect. The most-common name is soursop, referring to its sour and sweet flavors, while in Malaysia, this tree is commonly called ‘durian belanda’. Furthermore, A. muricata contains a high content of phenolic compounds in the roots and leaves. In vitro and in vivo studies have shown that A. muricata has the pharmacological effects of anti-cancer, anti-microbial, antioxidant, anti-ulcer, anti-diabetic, anti-hypertensive, and wound healing. With regard to its anti-diabetic effect, mechanisms of inhibiting glucose absorption via α-glucosidase and α-amylase activity inhibition, increasing glucose tolerance and glucose uptake by peripheral tissues, and stimulating insulin release or acting like insulin were deeply discussed. There is still a significant research gap, and future studies are required to conduct detailed investigations and gain a better molecular understanding of A. muricata’s anti-diabetic potential, especially by using the metabolomics approach.
Research finding on modification of pineapple peel through extrusion and steam pressure have led to increasing fiber and nutritional properties of the pineapple powder. The objective of the present study was to investigate the effect of extrusion processing and steam pressure on soluble and insoluble fiber contents, antioxidant activities, sugar profile and proximate contents. The extrusion of Morris pineapple peel increased soluble dietary fiber (SDF-2.8 folds), insoluble dietary fiber (IDF-1.2 folds) and total dietary fiber (TDF-1.3 folds). Steam pressure treatment also show the same trends of fiber modification in Morris peel (SDF-3.4 folds, IDF-1 folds, TDF-1.2 folds). The sugar profile showed that fructose and glucose increased after fiber modification. Total phenolic content (TPC), ferric reducing antioxidant power (FRAP) assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH test) had been used to determine antioxidant activity in both processing method. The results of the proximate analysis showed that protein, crude fiber and moisture content affected by extrusion and steam pressure process of pineapple peel. It can be conclude that modification of fiber through extrusion and steam pressure is able to alter fiber and nutritional properties of pineapple peel.
Annona muricata is a common plant used in Africa and South America to manage various types of disease. However, there is insufficient toxicological information or published standard available regarding repeated dose animal toxicity data. As part of the safety assessment, we exposed Sprague Dawley rats to an acute oral toxicity of A. muricata. The intent of the current study was to use advanced proton nuclear magnetic resonance (1H NMR) in serum and urinary metabolomics evaluation techniques to provide the in vivo acute toxicological profile of A. muricata leaf ethanol extract in accordance with the Organization for Economic Co-operation and Development’s (OECD) 423 guidelines. A single 2000 mg/kg dose of A. muricata leaf ethanol extract was administered to Sprague Dawley rats over an observational period of 14 days. The toxicity evaluation (physical and behavior observation, body weight, renal function test, liver function test and 1H NMR analysis) showed no abnormal toxicity. Histopathological analysis manifested mild changes, i.e., the treated kidney manifested mild hypercellularity of mesangial cells and mild red blood cell congestion. In addition, there was mild hemorrhage into tissue with scattered inflammatory cells and mild dilated central vein with fibrosis in the liver. However, the changes were very mild and not significant which correlate with other analyses conducted in this study (biochemical test and 1H NMR metabolomic analysis). On the other hand, urinary 1H NMR analysis collected on day 15 revealed high similarity on the metabolite variations for both untreated and treated groups. Importantly, the outcomes suggest that A. muricata leaf ethanol extract can be safely consumed at a dose of 2000 mg/kg and the LD50 must be more than 2000 mg/kg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.