The development of cockle shell-based calcium carbonate aragonite polymorph nanoparticle synthesis method using the technique of mechanical stirring in the presence of dodecyl dimethyl betaine (BS-12) incorporated with surface functionalization demonstrated high homogeneity of sample product with good nanoparticles dispersion. The cockle shell-based calcium carbonate aragonite nanoparticle with functionalized surface was characterized using transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), particle size distribution, pH measurement analysis, Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). Surface functionalization was proven to improve the overall size and shape of the nanoparticles and enhance their dispersion properties, preventing coarse agglomeration among nanoparticles in general. The improved method was verified to retain its aragonite crystalline nature. Additionally, surface functionalization did not increase the size of nanoparticles throughout the modification process. This facile preparation using naturally occurring cockle shells as the main source is environmentally friendly because it provides relatively low cost of raw material source as it is abundantly available in nature and has good mineral purity content. Hence, high quality production of surface functionalized cockle shell-based calcium carbonate aragonite polymorph nanoparticles can potentially be exploited and produced on a large scale for various industrial applications, especially for biomedical purposes in the near future.
Calcium carbonate aragonite polymorph nanoparticles derived from cockle shells were prepared using surface functionalization method followed by purification steps. Size, morphology, and surface properties of the nanoparticles were characterized using transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, zetasizer, X-ray powder diffraction, and Fourier transform infrared spectrometry techniques. The potential of surface-functionalized calcium carbonate aragonite polymorph nanoparticle as a drug-delivery agent were assessed through in vitro drug-loading test and drug-release test. Transmission electron microscopy, field emission scanning electron microscopy, and particle size distribution analyses revealed that size, morphology, and surface characterization had been improved after surface functionalization process. Zeta potential of the nanoparticles was found to be increased, thereby demonstrating better dispersion among the nanoparticles. Purification techniques showed a further improvement in the overall distribution of nanoparticles toward more refined size ranges <100 nm, which specifically favored drug-delivery applications. The purity of the aragonite phase and their chemical analyses were verified by X-ray powder diffraction and Fourier transform infrared spectrometry studies. In vitro biological response of hFOB 1.19 osteoblast cells showed that surface functionalization could improve the cytotoxicity of cockle shell-based calcium carbonate aragonite nanocarrier. The sample was also sensitive to pH changes and demonstrated good abilities to load and sustain in vitro drug. This study thus indicates that calcium carbonate aragonite polymorph nanoparticles derived from cockle shells, a natural biomaterial, with modified surface characteristics are promising and can be applied as efficient carriers for drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.