Given a task T , a set of experts V with multiple skills and a social network G(V, W ) reflecting the compatibility among the experts, team formation is the problem of identifying a team C ⊆ V that is both competent in performing the task T and compatible in working together. Existing methods for this problem make too restrictive assumptions and thus cannot model practical scenarios. The goal of this paper is to consider the team formation problem in a realistic setting and present a novel formulation based on densest subgraphs. Our formulation allows modeling of many natural requirements such as (i) inclusion of a designated team leader and/or a group of given experts, (ii) restriction of the size or more generally cost of the team (iii) enforcing locality of the team, e.g., in a geographical sense or social sense, etc. The proposed formulation leads to a generalized version of the classical densest subgraph problem with cardinality constraints (DSP), which is an NP hard problem and has many applications in social network analysis. In this paper, we present a new method for (approximately) solving the generalized DSP (GDSP). Our method, FORTE, is based on solving an equivalent continuous relaxation of GDSP. The solution found by our method has a quality guarantee and always satisfies the constraints of GDSP. Experiments show that the proposed formulation (GDSP) is useful in modeling a broader range of team formation problems and that our method produces more coherent and compact teams of high quality. We also show, with the help of an LP relaxation of GDSP, that our method gives close to optimal solutions to GDSP.
Deep learning based forecasting methods have become the methods of choice in many applications of time series prediction or forecasting often outperforming other approaches. Consequently, over the last years, these methods are now ubiquitous in large-scale industrial forecasting applications and have consistently ranked among the best entries in forecasting competitions (e.g., M4 and M5). This practical success has further increased the academic interest to understand and improve deep forecasting methods. In this article we provide an introduction and overview of the field: We present important building blocks for deep forecasting in some depth; using these building blocks, we then survey the breadth of the recent deep forecasting literature.
The de-facto standard approach of promoting sparsity by means of ℓ 1 -regularization becomes ineffective in the presence of simplex constraints, i.e., the target is known to have non-negative entries summing up to a given constant. The situation is analogous for the use of nuclear norm regularization for low-rank recovery of Hermitian positive semidefinite matrices with given trace. In the present paper, we discuss several strategies to deal with this situation, from simple to more complex. As a starting point, we consider empirical risk minimization (ERM). It follows from existing theory that ERM enjoys better theoretical properties w.r.t. prediction and ℓ 2 -estimation error than ℓ 1 -regularization. In light of this, we argue that ERM combined with a subsequent sparsification step like thresholding is superior to the heuristic of using ℓ 1 -regularization after dropping the sum constraint and subsequent normalization.At the next level, we show that any sparsity-promoting regularizer under simplex constraints cannot be convex. A novel sparsity-promoting regularization scheme based on the inverse or negative of the squared ℓ 2 -norm is proposed, which avoids shortcomings of various alternative methods from the literature. Our approach naturally extends to Hermitian positive semidefinite matrices with given trace. Numerical studies concerning compressed sensing, sparse mixture density estimation, portfolio optimization and quantum state tomography are used to illustrate the key points of the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.