Machine learning is a promising domain which is widely used now a days in the field of agriculture. The availability of manpower for agriculture is not enough and skill full farmers are less. Understanding the situation of the crop is not that much easy to detect and prevent the diseases in the crop. It is also widely employed in various agricultural fields such as topsoil management, yield management, water management, disease management and climate conditions. The machine learning models facilitate very fast and optimal decisions. The model of machine learning involves with training and testing to predict the accuracy of the result. The use of machine learning in agriculture helps to increase the productivity and better management on soil classification, disease detection, species management, water management, yield prediction, crop quality and weed detection. This article aims at providing detailed information on various machine learning approaches proposed in the past five years by emphasizing the advantage and disadvantages. It also compares different machine learning algorithms used in the modern agricultural field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.