The study carried out in this report proposes the best keypoint detection, description, and pose estimation algorithm combination for Quranic Arabic words. Oriented-FAST Rotated-BRIEF (ORB) and Accelerated-KAZE (AKAZE) are used as the keypoint detection and description algorithms while Random Sample Consensus (RANSAC) and Least Median Squares (LMEDS) are used to evaluate the homography for pose estimation algorithms. The algorithms are combined with each other to provide four different techniques to estimate the pose of Quranic Arabic words. The algorithms are tested on a limited dataset chosen from a phrase within the Quran. Performance of each algorithm is measured in real-time through inlier to keypoint ratio which determines pose accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.