The purpose of this study is to design a Building Information Modelling (BIM) integration model for architectural education in adopting BIM culture. Most of the current models on BIM adoption are directed toward the realm of construction industries (consultant firms and contractors) and less on higher education institutions. The discourse on education is mostly concerning experimentation on curricular integration and the lack of general concepts of integration. The main research inquiry of this study is concentrated on which criteria are best suited to the education culture. Utilizing reflective discussion of past experiences and a semisystematic literature review, detailed criteria to capture the multidimensional facets of BIM adoption are proposed. The study proposes the model that offers six main integration criteria: (a) institution vision and priorities, (b) infrastructure, (c) curriculum integration, (d) human resources, (e) knowledge organization, and (f) change management. The application of the model may be limited to architectural schools which are still in the initial process of BIM adoption but the comprehensiveness of the model may possibly be developed as the basis for readiness assessment, roadmap development, and exchange terminologies between education and the wider context of architecture, engineering, construction, operation and management industries.
No abstract
The largest energy consumption that we use is the consumption of electrical energy in terms of meeting the lighting needs and building air conditioning requirements (World Energy Consumption, 2016). According to the Ministry of Energy and Mineral Resources (2017), Indonesia’s largest energy use in commercial buildings is for flight systems (63%), lighting systems (20%), vertical transportation (7%) electronic devices (10%). The use of energy in the fulfillment of excessive needs result in worsening conditions on earth. Data can be a reflection of how the condition of the earth that we live at this time. Energy savings should be made to reduce the damage already occurring on this earth such as electricity usage savings, optimization of use of materials, the use of motor vehicles that cause air pollution, and others. The way that can be used to reduce artificial energy use is to utilize the existing passive building design such as the use of solar energy that can be maximized during the day, so that the use of electrical energy for lamps and artificial air conditioning. reduced. In addition, it can also be considered the optimal use of wind direction and speed that can suppress the use of Air Conditioner (AC) in excess. Building envelope with bimetal thermal material module application is part of kinetic architecture via biomimicry approach. Kinetic architecture is a concept where buildings are designed to allow parts of buildings to move without compromising the unity of the structural system. Approaches that can be applied in green building design is by optimizing bimetal material module that utilizes the thermal coefficient of a material. With this approach, building envelopes are improvised so that they can adapt to the existing environment. This research take location of case study in Kampung Juminahan, Yogyakarta, Indonesia which has characters of comunal housing.
Abstract. This paper begins with a simple proposition: rather than mimicking the geometric structures found in nature, perhaps the most effective modes of sustainable fabrication can be found throughunderstanding the nature of materials themselves. The material becomes a design parameter through the constraints of fabrication tools, limitations of material size, and most importantly the productivecapacity of material resistance a given material's capacity and tendencies to take shape, rather than cutting shape out of material. Gridshell structures provide an intriguing case study to pursue this proposition. Not only is there clear precedent in the form finding experiments of frei Otto and the institute for lightweight structures, but also the very nurbs based tools of current design practices developed from the ability of wood to bend. Taking the bent wood spline quite literally, gridshells provide a means that is at once formally expressive, structurally optimized, materially efficient, and quite simply a delight to experience. The the larger motivation of this work anticipates a parametric system linking the intrinsic material values of the gridshell tectonic with extrinsic criteria such as programmatic needs and environmental response. Through an applied case study of gridshells, the play between form and material is tested out through the author's own experimentation with gridshells and the pedagogical results of two gridshell studios.The goal of this research is to establish a give and take relationship between top down formal emphasis and a bottom-up material influence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.