Film is one of the most interesting topics to talk about. When someone writes an opinion on a film, all the elements in the film will be written down. Film opinion data in this study were taken from film comments written on twitter. The number of opinions written on Twitter requires classification according to the sentiments they have so that it is easy to get the tendency of the opinion towards the film whether it tends to have a positive, negative or neutral opinion. Recently, the spotlight on twitter media in Indonesia is a film with the title Horror-Ngeri Sedap. Ngeri-Ngeri Sedap is a 2022 Indonesian comedy-drama film directed and written by Bene Dion Rajagukguk. The film is set in the Batak Tribe, starring Arswendy Beningswara Nasution, Tika Panggabean, Boris Bokir Manullang, Gita Bhebhita Butar-butar, Lolox, and Indra Jegel. This causes differences in the views and opinions of twitter users towards the Horror Sedap film. So it is necessary to have a sentiment classification for the opinion. The use of the Naïve Bayes Algorithm was chosen in the analysis because it has the highest probability or opportunity value for data classification. Labeling on Twitter data is done manually by giving positive, negative, neutral sentiments to the raw dataset in Microsoft excel then the data enters the preprocessing transformation, tokenization and filtering stages. The tf-idf weighting is carried out when the data is complete in the transformation process, tf-idf is used to determine the number of occurrences of words, then the data classification is carried out using the Naïve Bayes Algorithm. confusion matrix testing is done after the data classification is complete using the orange tools. Based on the test results with the confusion matrix with orange tools, the average accuracy value is 0.65% and the precision value is 0.67%, and recall is 0.65%, and the percentage is neutral 0.83% in its classification. This proves that the public sentiment on the twitter platform towards the case of the film Horror Sedap is neutral and the Naïve Bayes Algorithm is considered reliable and valid in data processing.
Hipertensi didefinisikan sebagai penyakit krnis yang dapat menyebabkan tekanan darah meningkat melebihi 140/90 mmHg. Tidak adanya gejala spesifik dari penyakit hipertensi dapat menyebabkan penyakit yang serius atau komplikasi pada penderita hipertensi, oleh karena itu hipertensi dapat dilakukan sebagai "silent killer". Klinik Rafina Medical Center merupakan suatu fasilitas kesehatan tingkat pertama di Kabupaten Purwakarta, Jawa Barat. Penyakit hipertensi dari tahun 2020 sampai awal tahun 2022 di Klinik Rafina Medical Center selalu termasuk ke dalam 10 diagnosa terbanyak, artinya banyak pasien yang terdiagnosa hipertensi di klinik tersebut, oleh karena itu dilakukan identifikasi menggunakan metode data mining yang bertujuan untuk menghasilkan informasi mengenai pola gejala hipertensi. Metode analisis data pada penelitian ini yaitu metode Knowledge Discovery in Database (KDD). Metode data mining yang digunakan yaitu metode association rule, dimana metode ini dapat mencari dan mengidentifikasi pola asosiasi antar atribut dalam suatu dataset. Algoritma pada penelitian ini adalah algoritma apriori. Tools dalam penelitian ini menggunakan software Orange. Penelitian ini menggunakan minimum support 3%, dan minimum confidence 70% sehingga menghasilkan 2 aturan asosiasi. Aturan asosiasi dengan nilai confidence dan lift ratio tertinggi yaitu High Glucose, Nyeri Tengkuk → Nyeri Kepala artinya jika penderita hipertensi mempunyai riwayat High Glucose, dan merasakan gejala Nyeri Tengkuk, maka penderita hipertensi 98,9% akan merasakan gejala Nyeri Kepala dengan nilai lift ratio sebesar 2,41 yang artinya bahwa aturan asosiasi tersebut valid. Hasil tersebut diharapkan dapat memberikan pengetahuan baru mengenai pola gejala hipertensi sehingga dapat digunakan dalam penyuluhan dan penyediaan obat bagi penderita hipertensi khususnya di Klinik Rafina Medical Center.
Indonesia has many islands and there are beautiful inland areas, interesting historical and cultural ruins,beaches, mountains, and more. Especially in the tourism sector is one of the largest industries that are veryinfluential and grow very fast. The advancement of the tourism industry in a region is very dependent on thenumber of tourists who come both domestic and foreign tourists. The large number of foreign tourists that comepush and accelerate economic growth. So that directly leads to an increase in demand for goods and services. Tomeet the needs and demands of tourists, it is necessary to predict the number of visits of foreign tourists. Onemethod that can be used in forecasting is Monte Carlo. From the results of Monte Carlo research can work well,From the stage of the prediction system implementation that has been built using the initial parameter 12 months100x simulation and delta-t = 0.001, then get sigma = 52.2650054, Mu = -0.0398. And the simulation is moreaccurate in predicting the number of foreign tourist visits in East Java, which has a small error value. To get asmaller error value is by reducing or delta-t value.
Perbankan merupakan industri yang saat ini sudah berkembang dalam pemanfaatan teknologi informasi dengan meningkatkan standar kualitas layanan agar dapat bersaing dipasar pada era digital yang semakin ketat. Pada saat ini bank BRI sedang menarik perhatian masyarakat akan kualitas pembaharuan dengan meluncurkan aplikasi mobile banking, maka dari itu dilakukanlah analisis mengenai ulasan pengguna mobile banking BRImo untuk dijadikan sebagai objek penelitian dengan melakukan komparasi metode klasifikasi text mining. Penelitian ini bertujuan untuk mengetahui hasil komparasi algoritma Support vector machine dan Naive bayes. Algoritma Support vector machine dan Naive bayes adalah suatu metode klasifikasi untuk mengolah data berupa teks dengan tingkat akurasi yang baik. Algoritma ini biasanya digunakan untuk analisis text mining dengan 4 tahapan yaitu Scrapping data, Preprocessing, Klasifikasi dan evaluasi. Pada tahap preprocessing memiliki beberapa proses diantaranya filtering, labeling, case folding, tokenization, stopword removal & Stemming dan normalisasi agar mendapatkan suatu kata yang bisa diklasifikasikan. Hasil dari penelitian ini yaitu algoritma Support vector machine merupakan algortima yang lebih baik dalam klasifikasi data ulasan aplikasi mobile banking BRImo dengan nilai akurasi sebesar 97,69% dibandingkan algoritma Naive Bayes dengan nilai akurasi sebesar 96,53%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.