This paper investigates the influence of different magnetization patterns on the performances of the surface-mounted permanent magnet synchronous machines (SMPMSMs). Three magnetization patterns are employed, which are radial, parallel, and ideal Halbach magnetizations. These magnetization patterns are applied to 9-slot/10-pole and 15-slot/4-pole permanent magnet (PM) machines. The PM machines are designed and simulated by using Opera 2D finite element. The performances of three PM motors, such as airgap flux density, phase back-EMF, and cogging torque, are evaluated under the influence of different magnetization patterns. The total harmonic distortion of phase back-EMF (THDv) for the motors are investigated. The PM motors with ideal Halbach magnetization provide the lowest cogging torque and the lowest total harmonic distortion of phase back-EMF. Besides that, the optimum setting of the magnet pole-arc can reduce the total harmonic distortion of phase back-EMF and achieve lower cogging torque. The optimum magnet pole-arc produced by radial magnetization in 9-slot/10-pole motor is 24.8° mech., with cogging torque of 0.45 Nm, and THDv of 2.69 %. Meanwhile, the optimum magnet pole-arc produced by parallel magnetization in 9-slot/10-pole motor is 26.0° mech., with cogging torque of 0.41 Nm, and THDv of 2.00 %.
The performance of semi-buried permanent magnet synchronous machines (SBPMSMs) by the influence of two magnetization patterns are presented in this paper. These magnetization patterns include radial and parallel, which applied into 9-slot/8-pole (9s/8p) and 6-slot/4-pole (6s/4p) SBPMSMs. Hence, to evaluate the machines performance, AutoCAD and Opera2D finite element software are used to model and predict the electromagnetic characteristic performance of SBPMSMs. Two PM machines are optimized i.e. flux density distribution, phase back-EMF, and cogging torque by two magnetization patterns. The phase back-EMF of the machines are computed into harmonic components to investigate the total harmonic distortion (THDv
). It is found that the lowest THDv
for both 9s/8p and 6s/4p motors are in parallel magnetization (PaM), which are 8.66% and 3.98%, respectively. However, the lowest cogging torque for 9s/8p is radial magnetization (RaM), which is 0.0101 Nm and for 6s/4p is 0.1730 Nm with parallel magnetization pattern. By comparing the result of the optimum magnet pole arc for both motors, the 6s/4p motors show the minimum cogging torque and harmonic distortions are 0.16 Nm and 1.63% in PaM patterns. As a result, optimum motor performances among these two motors are 6s/4p PM motors with PaM pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.