Vascular endothelial growth factor (VEGF), which acts via members of a family of endothelial-specific receptor tyrosine kinases, is the only factor that has been shown definitively to play a role in the formation of the embryonic vasculature. Only one other family of receptor tyrosine kinases, comprising TIE1 and TIE2, is largely endothelial cell specific. We have recently cloned a ligand for TIE2, termed Angiopoietin-1. Here we show that mice engineered to lack Angiopoietin-1 display angiogenic deficits reminiscent of those previously seen in mice lacking TIE2, demonstrating that Angiopoietin-1 is a primary physiologic ligand for TIE2 and that it has critical in vivo angiogenic actions that are distinct from VEGF and that are not reflected in the classic in vitro assays used to characterize VEGF. Angiopoietin-1 seems to play a crucial role in mediating reciprocal interactions between the endothelium and surrounding matrix and mesenchyme.
Abstract:Two distinct mechan isms, vasculogenesis and angiogenesis implement the formation of the vascular network in the embryo. Vasculogenesis gives rise to the heart and the first primitive vascular plexus inside the embryo and in its surrounding membranes, as the yolk sac circulation. Angiogenesis is responsible for the remodeling and expansion of this network. While vasculogenesis refers to in situ differentiation and growth of blood vessels from mesodermal derived hemangioblasts , angiogenesis comprises two different mechanisms : endothelial sprouting and intussusceptive microvascular growth (IMG). The sprouting process is based on endothelial cell migration, proliferation and tube formation. IMG divides existing vessel lumens by formation and insertion of tissue folds and columns of interstitial tissue into the vessel lumen. The latter are termed interstitial or intervascular tissue structures (ITSs) and tissue pillars or posts. Intussusception also includes the establishment of new vessels by in situ loop formation in the wall of large veins. The molecular regulation of these distinct mechanisms is discussed in respect to the most important positive regulators, VEGF and its receptors flk-l (KDR) and flt-l , the Angiopoietin/tie system and the ephrin-B/EpH-B system. The cellular mechanisms and the molecular regulation of angiogenesis in the pathological state are summarized and the differences of physiological and pathological angiogenesis elaborated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.