This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
BNT162b2, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA (mRNA) encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) stabilized in the prefusion conformation, has demonstrated 95% efficacy to prevent coronavirus disease 2019 (COVID-19). Recently, we reported preliminary BNT162b2 safety and antibody response data from an ongoing placebo-controlled, observer-blinded phase 1/2 vaccine trial1. We present here antibody and T cell responses from a second, non-randomized open-label phase 1/2 trial in healthy adults, 19-55 years of age, after BNT162b2 prime/boost vaccination at 1 to 30 µg dose levels. BNT162b2 elicited strong antibody responses, with S-binding IgG concentrations above those in a COVID-19 human convalescent sample (HCS) panel. Day 29 (7 days post-boost) SARS-CoV-2 serum 50% neutralising geometric mean titers were 0.3-fold (1 µg) to 3.3-fold (30 µg) those of the HCS panel. The BNT162b2-elicited sera neutralised pseudoviruses with diverse SARS-CoV-2 S variants. Concurrently, in most participants, S-specific CD8+ and T helper type 1 (TH1) CD4+ T cells had expanded, with a high fraction producing interferon-γ (IFNγ). Using peptide MHC multimers, the epitopes recognised by several BNT162b2-induced CD8+ T cells when presented on frequent MHC alleles were identified. CD8+ T cells were shown to be of the early-differentiated effector-memory phenotype, with single specificities reaching 0.01-3% of circulating CD8+ T cells. In summary, vaccination with BNT162b2 at well tolerated doses elicits a combined adaptive humoral and cellular immune response, which together may contribute to protection against COVID-19.
BackgroundOral and intravenous formulations of ciprofloxacin have established efficacy and safety profiles in respiratory infections. A dry powder for inhalation (DPI) that uses Novartis’ PulmoSphere™ technology has been developed to deliver high concentrations of ciprofloxacin to the lung with low systemic exposure using a portable and convenient passive dry powder inhaler (Novartis’ T-326 inhaler).ObjectivesThe primary objective was to investigate the safety and tolerability of ciprofloxacin DPI in healthy male subjects, with a secondary objective to investigate the pharmacokinetics of ciprofloxacin after ciprofloxacin DPI administration.MethodsThis was a phase I, single-dose, single-site, randomized, single-blind, placebo-controlled, crossover study conducted in the hospital setting. Subjects were followed up for safety for approximately 2 weeks. Six healthy male subjects, aged 27–42 years with no history of pulmonary disease, repeated bronchitis or respiratory allergies were enrolled. In randomized order and separated by a 1-week washout period, subjects inhaled a single dose of ciprofloxacin DPI 32.5 mg or placebo from the T-326 inhaler. Primary safety parameters included vital signs, electrocardiogram, laboratory tests, adverse events and lung function (total specific resistance, thoracic gas volume and forced expiratory volume in 1 s). Plasma concentration–time data were used to calculate pharmacokinetic parameters.ResultsCiprofloxacin DPI was well tolerated with no clinically relevant adverse effects on lung function. Estimates of lung deposition derived from physiology-based pharmacokinetic modelling suggest that approximately 40 % of the total dose of ciprofloxacin DPI reached the trachea/bronchi and alveolar space. Systemic ciprofloxacin was detected soon after inhalation [peak concentration in plasma (Cmax) 56.42 μg/L, median time to Cmax 0.625 h], but total systemic exposure was minimal (area under the plasma concentration–time curve 354.4 μg·h/L). Terminal elimination half-life (9.5 h), apparent total clearance from plasma after non-intravenous administration (91.7 L/h) and apparent volume of distribution (1,262 L) data suggest that elimination from the respiratory tract was prolonged.ConclusionsIn healthy subjects, ciprofloxacin DPI was well tolerated, delivered ciprofloxacin to the lungs and resulted in minimal systemic exposure, allowing further investigation of its clinical use for the management of specific, chronic infections in pulmonary diseases.
PurposeTo evaluate the pharmacokinetic and pharmacodynamic effects of concomitant administration of single loading doses of clopidogrel or multiple doses of clopidogrel with multiple doses of dabigatran etexilate.MethodsThis was an open-label trial in healthy male subjects. In part 1 (pilot, n = 8) and part 3 (n = 12), a single dose of clopidogrel (300 or 600 mg, respectively) was given concomitantly with dabigatran etexilate at steady state; part 2 was a randomized, multiple-dose, crossover study with the test treatment being clopidogrel at steady state [300 mg loading dose on day 1, then 75 mg once daily (qd)] with concomitant dabigatran.ResultsBioavailability was moderately increased when a loading dose of clopidogrel (300 mg in part 1 and 600 mg in part 3) was administered concomitantly with dabigatran etexilate 150 mg twice daily (bid). Test/reference ratios for AUCτ,ss were 135% (90% CI 107–169%) and 132% (90% CI 112–156%), respectively. Steady-state dosing of clopidogrel 75 mg qd and dabigatran etexilate 150 mg bid (part 2) demonstrated minor effects on dabigatran pharmacokinetics (AUCτ,ss ratio test/reference: 91.9%, 90% CI 78.7–107%) or its pharmacokinetic/pharmacodynamic relationships (activated partial thromboplastin time, ecarin clotting time, thrombin time). Similarly, clopidogrel bioavailability remained unchanged by chronic administration of dabigatran etexilate (part 3: ratio test/reference for AUC0−24 was 103%; 90% CI 80.3–131%), as did its pharmacodynamic effects on the inhibition of platelet aggregation.ConclusionsWhen given concomitantly, dabigatran etexilate and clopidogrel at clinically relevant doses did not appear to have significant effects on the pharmacokinetic and pharmacodynamic profiles of either agent.Electronic supplementary materialThe online version of this article (doi:10.1007/s00228-012-1304-8) contains supplementary material, which is available to authorized users.
Chemotherapy-induced nausea and vomiting is ranked among the worst side effects of chemotherapy. NEPA is an oral fixed-dose combination antiemetic under development, consisting of netupitant 300 mg, a highly selective NK1 receptor antagonist (RA), and palonosetron 0.5 mg, a pharmacologically and clinically distinct 5-HT3 RA. Although palonosetron is not associated with relevant ECG effects, this study evaluated cardiovascular safety of netupitant in combination with palonosetron, as well as its tolerability.This randomised, placebo- and positively controlled study in 197 subjects included 4 treatment groups: placebo, 200 mg netupitant + 0.5 mg palonosetron (NEPA200/0.5), 600 mg netupitant + 1.5 mg palonosetron (NEPA600/1.5, a supratherapeutic dose), and 400 mg moxifloxacin. Assessments included a 24-h baseline ECG recording, followed by a single dose of treatment and ECG measurements for 2 days.Mean placebo-corrected time-averaged changes from baseline were similar in NEPA200/0.5 and NEPA600/1.5 groups primarily for individually heart rate-corrected QT interval (QTcI: +4.7 and +3.6 ms, respectively) and for heart rate (HR: –3.3 bpm and –3.0 bpm), PR interval (–0.4 ms and 0.2 ms), and QRS interval (1 ms and 0.5 ms). The time-matched analysis showed no upper confidence interval >10 ms, with no suggestion of a QTc effect by pharmacokinetic-pharmacodynamic modeling for parent/metabolites. Moxifloxacin showed the expected placebo-corrected change from baseline (+8.4 ms time average) and the expected profile to establish assay sensitivity. No new morphologic changes of clinical relevance were observed. Treatment-related adverse events were comparable among groups.This study showed that NEPA treatments produced no significant effects on QTcI, HR, PR interval, QRS interval, and cardiac morphology relative to placebo, even at supratherapeutic doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.