Histone methyltransferase EZH2 is upregulated during osteoarthritis (OA), which is the most widespread rheumatic disease worldwide, and a leading cause of disability. This study aimed to assess the impact of EZH2 inhibition on cartilage degradation, inflammation and functional disability. In vitro, gain and loss of EZH2 function were performed in human articular OA chondrocytes stimulated with IL-1β. In vivo, the effects of EZH2 inhibition were investigated on medial meniscectomy (MMX) OA mouse model. The tissue alterations were assayed by histology and the functional disabilities of the mice by actimetry and running wheel. In vitro, EZH2 overexpression exacerbated the action of IL-1β in chondrocytes increasing the expression of genes involved in inflammation, pain (NO, PGE2, IL6, NGF) and catabolism (MMPs), whereas EZH2 inhibition by a pharmacological inhibitor, EPZ-6438, reduced IL-1β effects. Ex vivo, EZH2 inhibition decreased IL-1β-induced degradation of cartilage. In vivo, intra-articular injections of the EZH2 inhibitor reduced cartilage degradation and improved motor functions of OA mice. This study demonstrates that the pharmacological inhibition of the histone methyl-transferase EZH2 slows the progression of osteoarthritis and improves motor functions in an experimental OA model, suggesting that EZH2 could be an effective target for the treatment of OA by reducing catabolism, inflammation and pain.
Background Osteoarthritis (OA) is the most common form of arthritis, affecting millions of people worldwide and characterised by joint pain and inflammation. It is a complex disease involving inflammatory factors and affecting the whole joint, including the synovial membrane. Since drug combination is widely used to treat chronic inflammatory diseases, a similar strategy of designing plant-derived natural products to reduce inflammation in OA joints may be of interest. In this study, we characterised the response of OA synovial cells to lipopolysaccharide (LPS) and investigated the biological action of the combination of curcumin, bromelain and harpagophytum in this original in vitro model of osteoarthritis. Methods Firstly, human synovial cells from OA patients were stimulated with LPS and proteomic analysis was performed. Bioinformatics analyses were performed using Cytoscape App and SkeletalVis databases. Additionally, cells were treated with curcumin, bromelain and harpagophytum alone or with the three vegetal compounds together. The gene expression involved in inflammation, pain or catabolism was determined by RT-PCR. The release of the encoded proteins by these genes and of prostaglandin E2 (PGE2) were also assayed by ELISA. Results Proteomic analysis demonstrated that LPS induces the expression of numerous proteins involved in the OA process in human OA synovial cells. In particular, it stimulates inflammation through the production of pro-inflammatory cytokines (Interleukin-6, IL-6), catabolism through an increase of metalloproteases (MMP-1, MMP-3, MMP-13), and the production of pain-mediating neurotrophins (Nerve Growth Factor, NGF). These increases were observed in terms of mRNA levels and protein release. LPS also increases the amount of PGE2, another inflammation and pain mediator. At the doses tested, vegetal extracts had little effect: only curcumin slightly counteracted the effects of LPS on NGF and MMP-13 mRNA, and PGE2, IL-6 and MMP-13 release. In contrast, the combination of curcumin with bromelain and harpagophytum reversed lots of effects of LPS in human OA synovial cells. It significantly reduced the gene expression and/or the release of proteins involved in catabolism (MMP-3 and -13), inflammation (IL-6) and pain (PGE2 and NGF). Conclusion We have shown that the stimulation of human OA synovial cells with LPS can induce protein changes similar to inflamed OA synovial tissues. In addition, using this model, we demonstrated that the combination of three vegetal compounds, namely curcumin, bromelain and harpagophytum, have anti-inflammatory and anti-catabolic effects in synovial cells and may thus reduce OA progression and related pain.
Background: Osteoarthritis is the most common cause of arthritis affecting millions of people worldwide, characterized by joint pain and in ammation. It is a complex disease involving in ammatory factors and affecting the whole joint including synovium. Since drug combination is widely used to treat chronic in ammatory diseases, a similar strategy may be worth of interest to design plant-derived natural products to reduce in ammation in OA joint. Here, we characterized the response of OA synovial cells to lipopolysaccharide (LPS) and investigated the biological action of the combination of curcumin, harpagophytum and bromelain in this original in vitro model of osteoarthritis.Methods: Primary, human synovial cells from OA patients were stimulated with LPS and proteomic analysis was performed. Bioinformatics analysis were performed using Cytoscape App and SkeletalVis databases. Additionally, cells were treated with curcumin, harpagophytum and bromelain alone or the three vegetal compounds together. The expression of genes involved in in ammation, pain or catabolism were determined by RT-PCR. The release of the encoded proteins by these genes and of prostaglandin E2 (PGE2) were also assayed by ELISA.Results: Proteomic analysis demonstrated that LPS induces the expression of numerous proteins involved in OA process in human OA synovial cells. In particular, it stimulates in ammation through the production of pro-in ammatory cytokines (Interleukin-6, IL-6), the catabolism through an increase of metalloproteases (MMP-1, MMP-3, MMP-13), and the production of pain-mediating neurotrophin (Nerve Growth Factor, NGF). These increases were observed at level of mRNA levels and of protein release. LPS also increases the amount of PGE2, another in ammation and pain mediator. At doses tested, vegetal extracts had little effects: only curcumin slightly counteracted the effects of LPS on NGF and MMP13 mRNA, and PGE2, IL-6 and MMP13 release. In contrast the association of curcumin with harpagophytum and bromelain reversed lots of effects of LPS in human OA synovial cells. It signi cantly reduced the gene expression and/or the release of proteins involved in catabolism (MMP3 and 13), in ammation (IL-6) and pain (PGE2 and NGF). Conclusion:We show that the stimulation of human OA synovial cells with LPS permit to induce protein changes similar to an in amed OA synovial tissues. In addition, using this model, we demonstrate that the combination of three vegetal compounds, namely curcumin, harpagophytum and bromelain have anti-in ammatory and anti-catabolic action in synovial cells and may thus reduce OA progression and related-pain.
Background: Osteoarthritis is the most common cause of arthritis affecting millions of people worldwide, characterized by joint pain and inflammation. It is a complex disease involving inflammatory factors and affecting the whole joint including synovium. Since drug combination is widely used to treat chronic inflammatory diseases, a similar strategy may be worth of interest to design plant-derived natural products to reduce inflammation in OA joint. Here, we characterized the response of OA synovial cells to lipopolysaccharide (LPS) and investigated the biological action of the combination of curcumin, harpagophytum and bromelain in this original in vitro model of osteoarthritis.Methods: Primary, human synovial cells from OA patients were stimulated with LPS and proteomic analysis was performed. Bioinformatics analysis were performed using Cytoscape App and SkeletalVis databases. Additionally, cells were treated with curcumin, harpagophytum and bromelain alone or the three vegetal compounds together. The expression of genes involved in inflammation, pain or catabolism were determined by RT-PCR. The release of the encoded proteins by these genes and of prostaglandin E2 (PGE2) were also assayed by ELISA. Results: Proteomic analysis demonstrated that LPS induces the expression of numerous proteins involved in OA process in human OA synovial cells. In particular, it stimulates inflammation through the production of pro-inflammatory cytokines (Interleukin-6, IL-6), the catabolism through an increase of metalloproteases (MMP-1, MMP-3, MMP-13), and the production of pain-mediating neurotrophin (Nerve Growth Factor, NGF). These increases were observed at level of mRNA levels and of protein release. LPS also increases the amount of PGE2, another inflammation and pain mediator. At doses tested, vegetal extracts had little effects: only curcumin slightly counteracted the effects of LPS on NGF and MMP13 mRNA, and PGE2, IL-6 and MMP13 release. In contrast the association of curcumin with harpagophytum and bromelain reversed lots of effects of LPS in human OA synovial cells. It significantly reduced the gene expression and/or the release of proteins involved in catabolism (MMP3 and 13), inflammation (IL-6) and pain (PGE2 and NGF).Conclusion: We show that the stimulation of human OA synovial cells with LPS permit to induce protein changes similar to an inflamed OA synovial tissues. In addition, using this model, we demonstrate that the combination of three vegetal compounds, namely curcumin, harpagophytum and bromelain have anti-inflammatory and anti-catabolic action in synovial cells and may thus reduce OA progression and related-pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.