The covalent linking of acetylenes presents an important route for the fabrication of novel carbon-based scaffolds and two-dimensional materials distinct from graphene. To date few attempts have been reported to implement this strategy at well-defined interfaces or monolayer templates. Here we demonstrate through real space direct visualization and manipulation in combination with X-ray photoelectron spectroscopy and density functional theory calculations the Ag surface-mediated terminal alkyne C sp À H bond activation and concomitant homo-coupling in a process formally reminiscent of the classical Glaser-Hay type reaction. The alkyne homo-coupling takes place on the Ag(111) noble metal surface in ultrahigh vacuum under soft conditions in the absence of conventionally used transition metal catalysts and with volatile H 2 as the only by-product. With the employed multitopic ethynyl species, we demonstrate a hierarchic reaction pathway that affords discrete compounds or polymeric networks featuring a conjugated backbone. This presents a new approach towards on-surface covalent chemistry and the realization of two-dimensional carbon-rich or allcarbon polymers.
The templated synthesis of porphyrin dimers, oligomers, and tapes has recently attracted considerable interest. Here, we introduce a clean, temperature-induced covalent dehydrogenative coupling mechanism between unsubstituted free-base porphine units yielding dimers, trimers, and larger oligomers directly on a Ag(111) support under ultrahigh-vacuum conditions. Our multitechnique approach, including scanning tunneling microscopy, near-edge X-ray absorption fine structure and photoelectron spectroscopy complemented by theoretical modeling, allows a comprehensive characterization of the resulting nanostructures and sheds light on the coupling mechanism. We identify distinct coupling motifs and report a decrease of the electronic gap and a modification of the frontier orbitals directly associated with the formation of triply fused dimeric species. This new on-surface homocoupling protocol yields covalent porphyrin nanostructures addressable with submolecular resolution and provides prospective model systems towards the exploration of extended oligomers with tailored chemical and physical properties.
We investigated the surface bonding and ordering of free-base porphine (2H-P), the parent compound of all porphyrins, on a smooth noble metal support. Our multitechnique investigation reveals a surprisingly rich and complex behavior, including intramolecular proton switching, repulsive intermolecular interactions, and density-driven phase transformations. For small concentrations, molecular-level observations using low-temperature scanning tunneling microscopy clearly show the operation of repulsive interactions between 2H-P molecules in direct contact with the employed Ag(111) surface, preventing the formation of islands. An increase of the molecular coverage results in a continuous decrease of the average intermolecular distance, correlated with multiple phase transformations: the system evolves from an isotropic, gas-like configuration via a fluid-like phase to a crystalline structure, which finally gives way to a disordered layer. Herein, considerable site-specific molecule-substrate interactions, favoring an exclusive adsorption on bridge positions of the Ag(111) lattice, play an important role. Accordingly, the 2D assembly of 2H-P/Ag(111) layers is dictated by the balance between adsorption energy maximization while retaining a single adsorption site counteracted by the repulsive molecule-molecule interactions. The long-range repulsion is associated with a charge redistribution at the 2H-P/Ag(111) interface comprising a partial filling of the lowest unoccupied molecular orbital, resulting in long-range electrostatic interactions between the adsorbates. Indeed, 2H-P molecules in the second layer that are electronically only weakly coupled to the Ag substrate show no repulsive behavior, but form dense-packed islands.
We report on the adsorption and self-metalation of a prototypic tetrapyrrole compound, the free-base porphine (2H-P), on the Cu(111) surface. Our multitechnique study combines scanning tunneling microscopy (STM) results with near-edge X-ray absorption fine-structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) data whose interpretation is supported by density functional theory calculations. In the first layer in contact with the copper substrate the molecules adsorb coplanar with the surface as shown by angle-resolved NEXAFS measurements. The quenching of the first resonance in the magic angle spectra of both carbon and nitrogen regions indicates a substantial electron transfer from the substrate to the LUMO of the molecule. The stepwise annealing of a bilayer of 2H-P molecules sequentially transforms the XP and NEXAFS signatures of the nitrogen regions into those indicative of the coordinated nitrogen species of the metalated copper porphine (Cu-P), i.e., we observe a temperature-induced self-metalation of the system. Pre- and post-metalation species are clearly discriminable by STM, corroborating the spectroscopic results. Similar to the free-base porphine, the Cu-P adsorbs flat in the first layer without distortion of the macrocycle. Additionally, the electron transfer from the copper surface to the molecule is preserved upon metalation. This behavior contrasts the self-metalation of tetraphenylporphyrin (2H-TPP) on Cu(111), where both the molecular conformation and the interaction with the substrate are strongly affected by the metalation process.
The tessellation of the Euclidean plane by regular polygons has been contemplated since ancient times and presents intriguing aspects embracing mathematics, art, and crystallography. Significant efforts were devoted to engineer specific 2D interfacial tessellations at the molecular level, but periodic patterns with distinct five-vertex motifs remained elusive. Here, we report a direct scanning tunneling microscopy investigation on the ceriumdirected assembly of linear polyphenyl molecular linkers with terminal carbonitrile groups on a smooth Ag(111) noble-metal surface. We demonstrate the spontaneous formation of fivefold Celigand coordination motifs, which are planar and flexible, such that vertices connecting simultaneously trigonal and square polygons can be expressed. By tuning the concentration and the stoichiometric ratio of rare-earth metal centers to ligands, a hierarchic assembly with dodecameric units and a surface-confined metalorganic coordination network yielding the semiregular Archimedean snub square tiling could be fabricated.T he tiling of surfaces is relevant for pure art (1), mathematics (2, 3), material physics (4), and molecular science (5). Johannes Kepler's pertaining, rigorous analysis revealed four centuries ago that in the Euclidean plane 11 tessellations based on symmetric polygonal units exist (6): three consist of a specific polygon (so-called regular tilings with squares, triangles, or hexagons, respectively), whereas eight require the combination of two or more different polygons (named semiregular or Archimedean tilings from triangles, squares, hexagons, octagons, and dodecagons).Manifestations of regular tessellations at the atomic and molecular level are ubiquitous, including crystalline planes and surfaces of elemental or molecular crystals, and honeycomb structures encountered, e.g., for graphene sheets, strain relief and supramolecular lattices. In addition, the family of semiregular Archimedean tilings features intriguing characteristics. They may represent geometrically frustrated magnets (7) or provide novel routes for constructing photonic crystals (8). However, with the exception of the frequently realized trihexagonal tiling (also known as the Kagomé lattice) (9-15), the other semiregular Archimedean tiling patterns remain largely unexplored.Three of the semiregular Archimedean tilings correspond to five-vertex configurations (Fig. 1 A-C): the snub hexagonal tiling (four triangles and one hexagon at each vertex, labeled 3.3.3.3.6), the elongated triangular tiling (three triangles and two squares join at each vertex in a 3.3.3.4.4 sequence), and the snub square tiling (three triangles and two squares at each vertex; labeled 3.3.4.3.4). They have been identified in bulk materials, such as layered crystalline structures of complex metallic alloys (4, 16-18), supramolecular dendritic liquids (19), liquid crystals (20), special star-branched polymers (21, 22), and binary nanoparticle superlattices (23). Moreover, recent experiments with colloids at a quasicrystalline substra...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.