Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L−1 of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from ‘healthy’ to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health.
Investigating the role of visual information in animal communication often involves the experimental presentation of live stimuli, mirrors, dummies, still images, video recordings or computer animations. In recent years computer animations have received increased attention, as this technology allows the presentation of moving stimuli that exhibit a fully standardized behaviour. However, whether simple animated 2D-still images of conspecific and heterospecific stimulus animals can elicit detailed behavioural responses in test animals is unclear thus far. In this study we validate a simple method to generate animated still images using PowerPoint presentations as an experimental tool. We studied context-specific behaviour directed towards conspecifics and heterospecifics, using the cooperatively breeding cichlid Neolamprologus pulcher as model species. N. pulcher did not only differentiate between images of conspecifics, predators and herbivorous fish, but they also showed adequate behavioural responses towards the respective stimulus images as well as towards stimulus individuals of different sizes. Our results indicate that even simple animated still images, which can be produced with minimal technical effort at very low costs, can be used to study detailed behavioural responses towards social and predatory challenges. Thus, this technique opens up intriguing possibilities to manipulate single or multiple visual features of the presented animals by simple digital image-editing and to study their relative importance to the observing fish. We hope to encourage further studies to use animated images as a powerful research tool in behavioural and evolutionary studies.
It is hard to find a definition of gill health in the literature although there is a lot of information on changes to gill structure as a result of infectious and non-infectious challenge. How these changes relate to overall fish health is sometimes not clear. Interaction between the gill, the fish, and a range of anticipated changes in the environment will have a currently unknown effect on marine health and aquaculture production. To a degree, fish will likely be able to ameliorate certain changes, such as compensating for slightly elevated carbon dioxide; however, these actions may come at the cost of compromising other functions such as osmoregulation. Compensation will also depend on gill epithelial health and other environmental factors like external nitrogen and ammonia sources which can rise depending on the direction future culture and levels of eutrophication take. Fish can also remodel gill structure in response to salinity, hypoxia, or acidification but it appears that increased temperatures may be associated with increased pathology observable in the gill, and certain fishes may be more susceptible to change. There is a need for more targeted research into climate change-specific gill physiology and a need to recognise gill health as being a key component of food security and not just fish health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.