Social evolution in honey bees has produced strong queen-worker dimorphism for plastic traits that depend on larval nutrition. The honey bee developmental program includes both larval components that determine plastic growth responses to larval nutrition and nurse components that regulate larval nutrition. We studied how these two components contribute to variation in worker and queen body size and ovary size for two pairs of honey bee lineages that show similar differences in worker body-ovary size allometry but have diverged over different evolutionary time scales. Our results indicate: that the lineages have diverged for both nurse and larval developmental components, that rapid changes in worker body-ovary allometry may disrupt queen development, and that queen-worker dimorphism arises mainly from discrete nurse-provided nutritional environments, not from a developmental switch that converts variable nutritional environments into discrete phenotypes. Both larval and nurse components have likely contributed to the evolution of queen-worker dimorphism.
Promoting diversity and inclusiveness in the STEM academic workforce remains a key challenge and national priority. Scientific societies can play a significant role in this process through the creation and implementation of programs to foster STEM academic workforce diversification, and by providing mentoring and skills development training that empower scientists from under-represented minority (URM) backgrounds to succeed in their communities of practice. In this article, we provide examples of challenges met by scientific societies in these areas and present data from the American Society for Cell Biology, highlighting the benefits received by trainees through long-term engagement with its programs. The success of these initiatives illustrates the impact of discipline-specific programming by scientific societies in supporting the development of URM scientists and an increasingly diverse and inclusive academic STEM community.
Mechanisms of vitamin function in non-mammals are poorly understood, despite being essential for development. Folate and cobalamin are B-vitamin cofactors with overlapping roles in transferring various single-carbon units. In mammals, one or both is needed for nucleotide synthesis, DNA methylation, amino acid conversions and other reactions. However, there has been little investigation of the response to folate or cobalamin in insects. Here, we manipulated folate intake and potentially cobalamin levels in the fruit fly Drosophila melanogaster with chemically-defined diets, an antibiotic to reduce bacterially-derived vitamins, and the folate-interfering pharmaceutical methotrexate, to see if single-carbon metabolites and DNA synthesis rates would be affected. We found that similar to mammals with low folate intake, fruit fly larvae had significantly slower growth and DNA synthesis rates. But changes to single carbon-metabolites did not mirror that of mammals with abnormal folate or given MTX. Five of the nine metabolites measured were not significantly affected (methionine, serine, glycine, methylglycine, and dimethylglycine) and three (cystathionine, methylgycine, and methylmalonic acid) were only decreased in larvae consuming methotrexate. Metabolites expected to be elevated if flies used cobalamin from microbial symbionts were not affected by dietary sulfaquinoxaline. Our data support the role of folate in nucleotide synthesis in D. melanogaster and that microbial symbionts provide functioning folates. We could not confirm how folate intake affects single carbon pathway metabolites, nor whether Drososphila use microbially-derived cobalamin. Further work should explore which cofactors are used in fruit flies in these important and potentially novel pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.