Recombinant protein design allows modular protein domains with different functionalities and responsive behaviors to be easily combined. Inclusion of these protein domains can enable recombinant proteins to have complex responses to their environment (e.g., temperature-triggered aggregation followed by enzyme-mediated cleavage for drug delivery or pH-triggered conformational change and self-assembly leading to structural stabilization by adjacent complementary residues). These “smart” behaviors can be tuned by amino acid identity and sequence, chemical modifications, and addition of other components. A wide variety of domains and peptides have smart behavior. In this review, we will focus on protein designs for self-assembly or conformational changes due to stimuli such as shifts in temperature or pH.
Ionizable amino acids in protein‐based hydrogels can confer pH‐responsive behavior. Because elastin‐like polypeptides (ELPs) have an established sequence and can crosslink to form hydrogels, they are an ideal system for creating pH‐sensitive materials. This study examines different parameters that might affect pH‐sensitive behavior and characterizes the mechanical and physical properties between pH 3 and 11 of three ELP‐based crosslinked hydrogels. The first finding is that varying the amount of crosslinker affects the overall stiffness and resilience of the hydrogels but does not strongly affect water content, swelling ratio, or pH sensitivity. Second, the choice of two popular tag sequences, which vary in histidine and aspartic acid content, does not have a strong effect on pH‐sensitive properties. Last, selectively blocking lysine and tyrosine residues through acetylation significantly decreases the pH‐sensitive zeta potential. Acetylated hydrogels also demonstrate different behavior at low pH values with reduced swelling, reduced water content, and higher stiffness. Overall, this work demonstrates that ELP hydrogels with ionizable groups are promising materials for environmentally‐responsive applications such as drug delivery, tissue engineering, and microfluidics.
The US agrifood system is very productive, but highly centralized and resource intensive with very weak links between production and consumption. This contributes to high levels of malnutrition and greenhouse gas emissions (GHGE). A popular approach to improvement is localization-reducing direct transport (farm to retail distance, or "food miles"). We examined Santa Barbara County (SBC) California, which mirrors the high production, nutritional and environmental problems, and growing localization movement of California. SBC ranks in the top 1% of US counties in value of agricultural products, and >80% of this value is produce (fruits and vegetables). We calculated the amount of produce grown in and consumed in SBC and estimated that >99% of produce grown in SBC is exported from the county, and >95% of produce consumed in SBC is imported. If all produce consumed in SBC was grown in the county (100% localization), it would reduce GHGE from the agrifood system <1%, and not necessarily affect nutrition. While food miles capture only a portion of the environmental impact of agrifood systems, localization could be done in ways that promote synergies between improving nutrition and reducing GHGE, and many such efforts exist in SBC.
Many protein-based materials, such as soy and mussel adhesive proteins, have been the subject of scientific and commercial interest. Recently, a variety of protein adhesives have been isolated from diverse sources such as insects, frogs and squid ring teeth. Many of these adhesives have similar amino acid compositions to elastomeric proteins such as elastin. Although elastin is widely investigated for a structural biomaterial, little work has been done to assess its adhesive potential. In this study, recombinant elastin-like polypeptides were created to probe the factors affecting adhesion strength. Lap shear adhesion was used to examine the effects of both extrinsic factors (pH, concentration, cross-linker, humidity, cure time and cure temperature) and intrinsic factors (protein sequence, structure and molecular weight). Of the extrinsic factors tested, only humidity, cure time and cure temperature had a significant effect on adhesion strength. As water content was reduced, adhesion strength increased. Of the intrinsic factors tested, amino acid sequence did not significantly affect adhesion strength, but less protein structure and higher molecular weights increased adhesion strength directly. The strengths of proteins in this study (greater than 2 MPa) were comparable to or higher than those of two commercially available protein-based adhesives, hide glue and a fibrin sealant. These results may provide general rules for the design of adhesives from elastomeric proteins.
Surgical adhesives can be useful in wound closure because they reduce the risk of infection and pain associated with sutures and staples. However, there are no commercially available surgical adhesives for soft tissue wound closure. To be effective, soft tissue adhesives must be soft and flexible, strongly cohesive and adhesive, biocompatible, and effective in a moist environment. To address these criteria, we draw inspiration from the elasticity and resilience of elastin proteins and the adhesive of marine mussels. We used an elastin-like polypeptide (ELP) for the backbone of our adhesive material due to its elasticity and biocompatibility. A mussel-inspired adhesive molecule, l-3,4-dihydroxyphenylalanine (DOPA), was incorporated into the adhesive to confer wet-setting adhesion. In this study, an ELP named YKV was designed to include tyrosine residues and lysine residues, which contain amine groups. A modified version of YKV, named mYKV, was created through enzymatic conversion of tyrosine residues into DOPA. The ELPs were combined with iron(III) nitrate, sodium periodate, and/or tris(hydroxymethyl)phosphine (THP) cross-linkers to investigate the effect of DOPA- and amine-based cross-linking on adhesion strength and cure time on porcine skin in a warm, humid environment. Incorporation of DOPA into the ELP increased adhesive strength by 2.5 times and reduced failure rates. Iron cross-linkers improved adhesion in the presence of DOPA. THP increased adhesion for all proteins tested even in the absence of DOPA. Using multiple cross-linkers in a single formulation did not significantly improve adhesion. The adhesives with the highest performance (iron nitrate mixed with mYKV and THP mixed with YKV or mYKV) on porcine skin had 10–18 times higher adhesion than a commercial sealant and reached appreciable adhesive strength within 10 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.