Due to sensor size and supporting circuitry, in-vivo load and deformation measurements are currently restricted to applications within larger orthopaedic implants. The objective of this study is to repurpose a commercially available low-power, miniature, wireless, telemetric, tire-pressure sensor (FXTH87) to measure load and deformation for future use in orthopaedic and biomedical applications. The capacitive transducer membrane was modified, and compressive deformation was applied to the transducer to determine the sensor signal value and the internal resistive force. The sensor package was embedded within a deformable enclosure to illustrate potential applications of the sensor for monitoring load. To reach the maximum output signal value, sensors required compressive deformation of 350 ± 24 µm. The output signal value of the sensor was an effective predictor of the applied load on a calibrated plastic strain member, over a range of 35 N. The FXTH87 sensor can effectively sense and transmit load-induced deformations. The sensor does not have a limit on loads it can measure, as long as deformation resulting from the applied load does not exceed 350 µm. The proposed device presents a sensitive and precise means to monitor deformation and load within small-scale, deformable enclosures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.