Computer networks intrusion detection systems (IDSs) and intrusion prevention systems (IPSs) are critical aspects that contribute to the success of an organization. Over the past years, IDSs and IPSs using different approaches have been developed and implemented to ensure that computer networks within enterprises are secure, reliable and available. In this paper, we focus on IDSs that are built using machine learning (ML) techniques. IDSs based on ML methods are effective and accurate in detecting networks attacks. However, the performance of these systems decreases for high dimensional data spaces. Therefore, it is crucial to implement an appropriate feature extraction method that can prune some of the features that do not possess a great impact in the classification process. Moreover, many of the ML based IDSs suffer from an increase in false positive rate and a low detection accuracy when the models are trained on highly imbalanced datasets. In this paper, we present an analysis the UNSW-NB15 intrusion detection dataset that will be used for training and testing our models. Moreover, we apply a filter-based feature reduction technique using the XGBoost algorithm. We then implement the following ML approaches using the reduced feature space: Support Vector Machine (SVM), k-Nearest-Neighbour (kNN), Logistic Regression (LR), Artificial Neural Network (ANN) and Decision Tree (DT). In our experiments, we considered both the binary and multiclass classification configurations. The results demonstrated that the XGBoost-based feature selection method allows for methods such as the DT to increase its test accuracy from 88.13 to 90.85% for the binary classification scheme.
This research attempts to introduce the production methodology of an anomaly detection dataset using ten desirable requirements. Subsequently, the article presents the produced dataset named UGRansome, created with up-to-date and modern network traffic (netflow), which represents cyclostationary patterns of normal and abnormal classes of threatening behaviours. It was discovered that the timestamp of various network attacks is inferior to one minute and this feature pattern was used to record the time taken by the threat to infiltrate a network node. The main asset of the proposed dataset is its implication in the detection of zero-day attacks and anomalies that have not been explored before and cannot be recognised by known threats signatures. For instance, the UDP Scan attack has been found to utilise the lowest netflow in the corpus, while the Razy utilises the highest one. In turn, the EDA2 and Globe malware are the most abnormal zero-day threats in the proposed dataset. These feature patterns are included in the corpus, but derived from two well-known datasets, namely, UGR’16 and ransomware that include real-life instances. The former incorporates cyclostationary patterns while the latter includes ransomware features. The UGRansome dataset was tested with cross-validation and compared to the KDD99 and NSL-KDD datasets to assess the performance of Ensemble Learning algorithms. False alarms have been minimized with a null empirical error during the experiment, which demonstrates that implementing the Random Forest algorithm applied to UGRansome can facilitate accurate results to enhance zero-day threats detection. Additionally, most zero-day threats such as Razy, Globe, EDA2, and TowerWeb are recognised as advanced persistent threats that are cyclostationary in nature and it is predicted that they will be using spamming and phishing for intrusion. Lastly, achieving the UGRansome balance was found to be NP-Hard due to real life-threatening classes that do not have a uniform distribution in terms of several instances.
The evolution of the Internet and cloud-based technologies have empowered several organizations with the capacity to implement large-scale Internet of Things (IoT)-based ecosystems, such as Industrial IoT (IIoT). The IoT and, by virtue, the IIoT, are vulnerable to new types of threats and intrusions because of the nature of their networks. So it is crucial to develop Intrusion Detection Systems (IDSs) that can provide the security, privacy, and integrity of IIoT networks. In this research, we propose an IDS for IIoT that was implemented using the Genetic Algorithm (GA) for feature selection, and the Random Forest (RF) model was employed in the GA fitness function. The models used for the intrusion detection processes include classifiers such as the RF, Linear Regression (LR), Naïve Bayes (NB), Decision Tree (DT), Extra-Trees (ET), and Extreme Gradient Boosting (XGB). The GA-RF generated 10 feature vectors for the binary classification scheme and seven feature vectors for the multiclass classification procedure. The UNSW-NB15 is used to assess the effectiveness and the robustness of our proposed approach. The experimental outcomes demonstrated that for the binary modeling process, the GA-RF achieved a test accuracy (TAC) of 87.61% and an Area Under the Curve (AUC) of 0.98, using a feature vector that contained 16 features. These results were superior to existing IDS frameworks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.