In this work we evaluate the predictive capability of identifying long term, micro place hot spots in Dallas, Texas. We create hot spots using a clustering algorithm, using law enforcement cost of crime estimates as weights. Relative to the much larger current hot spot areas defined by the Dallas Police Department, our identified hot spots are much smaller (under 3 square miles), and capture crime cost at a higher density. We also show that the clustering algorithm captures a wide array of hot spot types; some one or two addresses, some street segments, and others an agglomeration of larger areas. This suggests identifying hot spots based on a specific unit of aggregation (e.g. addresses, street segments), may be less efficient than using a clustering technique in practice.
In this work we evaluate the predictive capability of identifying long term, micro place hot spots in Dallas, Texas. We create hot spots using a clustering algorithm, using law enforcement cost of responding to crime estimates as weights. Relative to the much larger current hot spot areas defined by the Dallas Police Department, our identified hot spots are much smaller (under 3 square miles), and capture crime cost at a higher density. We also show that the clustering algorithm captures a wide array of hot spot types; some one or two addresses, some street segments, and others an agglomeration of larger areas. This suggests identifying hot spots based on a specific unit of aggregation (e.g. addresses, street segments), may be less efficient than using a clustering technique in practice.
In this work we evaluate the predictive capability of identifying long term, micro place hot spots in Dallas, Texas. We create hot spots using a hierarchical clustering algorithm, using law enforcement cost of crime estimates as weights. Relative to the much larger current hot spot areas defined by the Dallas Police Department, our identified hot spots are much smaller (under 3 square miles), and capture crime harm at a higher density per the Predictive Accuracy Index statistic. We also show that the hierarchical clustering algorithm captures a wide array of hot spot types; some one or two addresses, some street segments, and others an agglomeration of larger areas. This suggests identifying hot spots based on a specific unit of aggregation (e.g. addresses, street segments), may be less efficient than using a hierarchical clustering technique in practice. Code and data to reproduce the analysis can be downloaded from https://www.dropbox.com/sh/kcask6pinaaaz4v/AAC4CXk6NzUweyld2n4OznzWa?dl=0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.