High-throughput sequencing of B and T cell receptors is routinely being applied in studies of adaptive immunity. The Adaptive Immune Receptor Repertoire (AIRR) Community was formed in 2015 to address issues in AIRR sequencing studies, including the development of reporting standards for the sharing of data sets.
Manual identification of brain tumors is an error-prone and tedious process for radiologists; therefore, it is crucial to adopt an automated system. The binary classification process, such as malignant or benign is relatively trivial; whereas, the multimodal brain tumors classification (T1, T2, T1CE, and Flair) is a challenging task for radiologists. Here, we present an automated multimodal classification method using deep learning for brain tumor type classification. The proposed method consists of five core steps. In the first step, the linear contrast stretching is employed using edge-based histogram equalization and discrete cosine transform (DCT). In the second step, deep learning feature extraction is performed. By utilizing transfer learning, two pre-trained convolutional neural network (CNN) models, namely VGG16 and VGG19, were used for feature extraction. In the third step, a correntropy-based joint learning approach was implemented along with the extreme learning machine (ELM) for the selection of best features. In the fourth step, the partial least square (PLS)-based robust covariant features were fused in one matrix. The combined matrix was fed to ELM for final classification. The proposed method was validated on the BraTS datasets and an accuracy of 97.8%, 96.9%, 92.5% for BraTs2015, BraTs2017, and BraTs2018, respectively, was achieved.
High-throughput sequencing (HTS) of immunoglobulin (B-cell receptor, antibody) and T-cell receptor repertoires has increased dramatically since the technique was introduced in 2009 (1–3). This experimental approach explores the maturation of the adaptive immune system and its response to antigens, pathogens, and disease conditions in exquisite detail. It holds significant promise for diagnostic and therapy-guiding applications. New technology often spreads rapidly, sometimes more rapidly than the understanding of how to make the products of that technology reliable, reproducible, or usable by others. As complex technologies have developed, scientific communities have come together to adopt common standards, protocols, and policies for generating and sharing data sets, such as the MIAME protocols developed for microarray experiments. The Adaptive Immune Receptor Repertoire (AIRR) Community formed in 2015 to address similar issues for HTS data of immune repertoires. The purpose of this perspective is to provide an overview of the AIRR Community’s founding principles and present the progress that the AIRR Community has made in developing standards of practice and data sharing protocols. Finally, and most important, we invite all interested parties to join this effort to facilitate sharing and use of these powerful data sets (join@airr-community.org).
Plants are as vulnerable by diseases as animals. Citrus is a major plant grown mainly in the tropical areas of the world due to its richness in vitamin C and other important nutrients. The production of the citrus fruit has been widely affected by citrus diseases which ultimately degrades the fruit quality and causes financial loss to the growers. During the past decade, image processing and computer vision methods have been broadly adopted for the detection and classification of plant diseases. Early detection of diseases in citrus plants helps in preventing them to spread in the orchards which minimize the financial loss to the farmers. In this article, an image dataset citrus fruits, leaves, and stem is presented. The dataset holds citrus fruits and leaves images of healthy and infected plants with diseases such as Black spot, Canker, Scab, Greening, and Melanose. Most of the images were captured in December from the Orchards in Sargodha region of Pakistan when the fruit was about to ripen and maximum diseases were found on citrus plants. The dataset is hosted by the Department of Computer Science, University of Gujrat and acquired under the mutual cooperation of the University of Gujrat and the Citrus Research Center, Government of Punjab, Pakistan. The dataset would potentially be helpful to researchers who use machine learning and computer vision algorithms to develop computer applications to help farmers in early detection of plant diseases. The dataset is freely available at https://data.mendeley.com/datasets/3f83gxmv57/2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.