The objective of this paper is to rectify any monocular image by computing a homography matrix that transforms it to a bird's eye (overhead) view.We make the following contributions: (i) we show that the homography matrix can be parameterised with only four parameters that specify the horizon line and the vertical vanishing point, or only two if the field of view or focal length is known; (ii) We introduce a novel representation for the geometry of a line or point (which can be at infinity) that is suitable for regression with a convolutional neural network (CNN); (iii) We introduce a large synthetic image dataset with ground truth for the orthogonal vanishing points, that can be used for training a CNN to predict these geometric entities; and finally (iv) We achieve state-of-theart results on horizon detection, with 74.52% AUC on the Horizon Lines in the Wild dataset. Our method is fast and robust, and can be used to remove perspective distortion from videos in real time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.