A conventional systematic satisfiability logic suffers from a nonflexible logical structure that leads to a lack of interpretation. To resolve this problem, the advantage of introducing nonsystematic satisfiability logic is important to improve the flexibility of the logical structure. This paper proposes Random 3 Satisfiability (RAN3SAT) with three types of logical combinations (k =1, 3, k =2, 3, and k =1, 2, 3) to report the behaviors of multiple logical structures. The different types of RAN3SAT enforced with Discrete Hopfield Neural Network (DHNN) are included with benchmark searching techniques, such as Exhaustive Search algorithm. Additionally, to strengthen and certify the behavior of the proposed model, we extensively conducted several performance evaluation metrics with a specific number of neurons. In particular, the experimental results revealed that RAN3SAT was able to be implemented in DHNN, and each logical combination has its characteristics. Nonetheless, RAN3SAT provides more neuron variations in the whole solution space. The proposed model can also be applied in real-world applications such as the logic mining approach since RAN3SAT consists of various logic combinations that behave as input language to transform raw data into informative output.
One of the influential models in the artificial neural network (ANN) research field for addressing the issue of knowledge in the non-systematic logical rule is Random k Satisfiability. In this context, knowledge structure representation is also the potential application of Random k Satisfiability. Despite many attempts to represent logical rules in a non-systematic structure, previous studies have failed to consider higher-order logical rules. As the amount of information in the logical rule increases, the proposed network is unable to proceed to the retrieval phase, where the behavior of the Random Satisfiability can be observed. This study approaches these issues by proposing higher-order Random k Satisfiability for k ≤ 3 in the Hopfield Neural Network (HNN). In this regard, introducing the 3 Satisfiability logical rule to the existing network increases the synaptic weight dimensions in Lyapunov’s energy function and local field. In this study, we proposed an Election Algorithm (EA) to optimize the learning phase of HNN to compensate for the high computational complexity during the learning phase. This research extensively evaluates the proposed model using various performance metrics. The main findings of this research indicated the compatibility and performance of Random 3 Satisfiability logical representation during the learning and retrieval phase via EA with HNN in terms of error evaluations, energy analysis, similarity indices, and variability measures. The results also emphasized that the proposed Random 3 Satisfiability representation incorporates with EA in HNN is capable to optimize the learning and retrieval phase as compared to the conventional model, which deployed Exhaustive Search (ES).
Hybridized algorithms are commonly employed to improve the performance of any existing method. However, an optimal learning algorithm composed of evolutionary and swarm intelligence can radically improve the quality of the final neuron states and has not received creative attention yet. Considering this issue, this paper presents a novel metaheuristics algorithm combined with several objectives—introduced as the Hybrid Election Algorithm (HEA)—with great results in solving optimization and combinatorial problems over a binary search space. The core and underpinning ideas of this proposed HEA are inspired by socio-political phenomena, consisting of creative and powerful mechanisms to achieve the optimal result. A non-systematic logical structure can find a better phenomenon in the study of logic programming. In this regard, a non-systematic structure known as Random k Satisfiability (RANkSAT) with higher-order is hosted here to overcome the interpretability and dissimilarity compared to a systematic, logical structure in a Discrete Hopfield Neural Network (DHNN). The novelty of this study is to introduce a new multi-objective Hybrid Election Algorithm that achieves the highest fitness value and can boost the storage capacity of DHNN along with a diversified logical structure embedded with RANkSAT representation. To attain such goals, the proposed algorithm tested four different types of algorithms, such as evolutionary types (Genetic Algorithm (GA)), swarm intelligence types (Artificial Bee Colony algorithm), population-based (traditional Election Algorithm (EA)) and the Exhaustive Search (ES) model. To check the performance of the proposed HEA model, several performance metrics, such as training–testing, energy, similarity analysis and statistical analysis, such as the Friedman test with convergence analysis, have been examined and analyzed. Based on the experimental and statistical results, the proposed HEA model outperformed all the mentioned four models in this research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.