The need for effective identity matching systems has led to extensive research in the area of name search. For the most part, such work has been limited to English and other Latin-based languages. Consequently, algorithms such as Soundex and n-gram matching are of limited utility for languages such as Arabic, which has vastly different morphologic features that rely heavily on phonetic information. The dearth of work in this field is partly caused by the lack of standardized test data. Consequently, we have built a collection of 7,939 Arabic names, along with 50 training queries and 111 test queries. We use this collection to evaluate a variety of algorithms, including a derivative of Soundex tailored to Arabic (ASOUNDEX), measuring effectiveness by using standard information retrieval measures. Our results show an improvement of 70% over existing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.