This study presents a more efficient and innovative prototype of a hydrogen generation system using proton exchange membrane (PEM) electrolyzer. The aim of this study is to generate hydrogen gas energy that conducts the chemical reaction by electrolytic movements as well as to design a system that generates energy with H2 through new technology. The Cr‐C coated SS304 bipolar plates were used in the electrolysis cells and the septic mixture (urea, ammonia, methyl alcohol) was used in the electrolyzer as a chemical solution to make the hydrogen production more efficient and cost effective. The super strong magnets were also mounted on the outer surface of the electrolysis cells to improve the performance and efficiency. The performance of the electrolyzer was determined by operating the current and voltage parameters. The results were collected through experiments and the optimization of the different parameters. In this prototype study, the production of hydrogen gas in the system (1 MW) through the presented system was found to be as 6 m3 h−1 and the simple payback period (SPP) was calculated as 2.32 y. These results indicate that this system can produce hydrogen more efficiently and economically.
Hydrogen production through an alkaline electrolyzer as well as a techno‐economic and enviro‐economic analysis are presented. The proposal of this innovative study is to generate hydrogen gas energy from an alkaline electrolyzer energy system. The prototype of this alkaline electrolyzer was developed by application of hydrogen production through alkaline electrolyzer optimization. This novel chemical mixture is made up from the combination of ammonia, ethyl alcohol, urea, and deionized or distilled water. The result proved to be a model study by emphasizing the annual profit of the alkaline electrolyzer of a simple payback period of the prototype system. A prototype of alkaline electrolyzer is designed and developed to produce oxyhydrogen gas through water electrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.